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COMMON CHARACTERISTIC OF THE DISSERTATION 

 

Relevance of the topic and degree of development. In recent 

years, the combined development of solid-state physics and other 

related scientific fields has led to discoveries that can be considered a 

revolution in the submicron and nanoscale, the dimensions of which 

are smaller than a micron. These discoveries, in turn, have been 

successfully applied in industry and technological processes, giving 

impetus to the development of modern nanotechnology. As is known, 

classical laws of physics lose their fundamentality at the nanoscale, 

and observed physical phenomena cannot be explained using these 

laws. In this case, physical systems behave like quantum systems, and 

their explanation becomes possible within the framework of the 

fundamental laws of quantum physics. In other words, classical 

systems, determined at the macroscopic level, give way to quantum 

systems, the dynamics and evolution of which are based on 

probability theory at the nanoscale and angstrom level. 

In addition, many scientific and research works are being 

conducted in the direction of studying the influence of the 

gravitational field on various quantum systems. The increased interest 

in this kind of research is due, first of all, to the important role that the 

gravitational field can reveal in quantum measurements, many 

"hidden" properties. For example, the discovery of shifts in the energy 

levels of the hydrogen atom as a result of studying the influence of 

the gravitational field on a quantum system aroused great interest. The 

interaction of the gravitational field with matter and the possible 

quantization of this field are also important objects of research. 

Various approaches and theories are used to quantize the gravitational 

field and construct its quantum theory. For example, the perturbative 

approach based on small excitations in the classical background, the 

ring quantization approach based on the rearrangement of dynamic 

variables, string theory based on the excitation of natural components 

of the gravitational field by new methods, and other similar theories 

are aimed at explaining gravitational effects using quantum theory. 

One of the widely used formalisms in modern scientific 

research is the position-dependent band structure and its 
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generalization to the case of effective mass. However, some 

difficulties may arise when using this formalism. The main reason for 

the difficulty is that, although many problems in quantum physics can 

be solved mathematically exactly using the reduced mass approach 

introduced in the two-body problems, replacing the fixed mass or 

band structure with variable analogues makes the problem 

mathematically difficult and it is very likely that the exact solution 

obtained for a homogeneous band structure or mass will turn into an 

approximate solution in the case of a mass that varies with position. 
However, the inclusion of this formalism led to the explanation of the 

phenomenon of the tunnel effect in superconductors, considered one 

of the ingenious discoveries in physics and experimentally discovered 

by I. Giaever in 1960 and awarded the Nobel Prize in Physics in 1973. 

It also made possible the exact solution of many problems in quantum 

physics. 

 In the dissertation work, precisely solvable oscillator-type 

confined models of quantum systems with position-dependent mass 

are comparatively studied. When at least one of the geometric 

dimensions of the crystal is in the de Broglie wavelength 

configuration of the electron, its thermodynamic, kinetic, and optical 

properties undergo unique changes. In other words, if the movement 

of charge carriers is limited in one, two or three directions, their 

energy is quantized. To ensure energy quantization, i.e. generation of 

a discrete energy spectrum, the infinite crystal is limited by barriers, 

i.e. boundaries are created, and exactly solvable models are 

constructed that obey the effect of quantum confinement in the form 

of a quantum well, which behaves as a limited quantum system with 

a non-rectangular profile of a harmonic oscillator. 

In short, structures in solid state physics are quantum systems 

of very small dimensions, subject to confinement effects. It is clear 

that when we carry out theoretical calculations for these systems, we 

must take into account that the problem of the wave function or the 

joint distribution function of momentum and position, which will 

characterize the system, must be solved in finite values, not in infinite 

values in the region of infinite coordinate values.  

Object and subject of the study. The object of the study is 
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exactly solvable models of oscillation-type confined quantum 

systems with position-dependent mass. The subject of the study is the 

search, comparison and study of visible images of the nonlinear 

energy spectrum and wave functions of stationary states by exactly 

solving the Schrödinger equation expressed by various kinetic energy 

operators within the framework of the position-dependent mass 

formalism for harmonic oscillators-type infinite and finite  deep 

quantum wells models. 

 Research goals and objectives. The main goal of the 

dissertation work is to comprehensively study exactly solvable 

oscillator-type confinement models of quantum systems with 

position-dependent mass. 

To achieve this goal, the following tasks have been performed. 

-Finding exact solutions of the Schrödinger equation expressed 

by the Zhu-Kroemer kinetic energy operator within the position-

dependent mass formalism for harmonic oscillator-type infinite and 

finite deep quantum well models; 

-Determination of the exact solutions of the Schrödinger 

equation expressed by the Gora-Williams kinetic energy operator 

within the position-dependent mass formalism for a harmonic 

oscillator-type infinite deep quantum well both under the influence of 

an external gravitational field and in the absence of such influence; 

-Finding exact solutions of the Schrödinger equation expressed 

by the kinetic energy operator compatible with Galilean invariance 

within the position-dependent mass formalism for a harmonic 

oscillator-type infinite deep quantum well both under the influence of 

an external gravitational field and in the absence of such influence; 

-Determination of exact limit relations restored by the 

disappearance of confinement between exact solutions of harmonic 

oscillatory quantum well models of the Schrödinger equation 

expressed by Zhu-Kroemer, Gora-Williams and Galilean invariance 

kinetic energy operators within the position-dependent mass 

formalism and the known non-relativistic canonical quantum 

harmonic oscillator; 

-Finding and proving a new limit relation that shows the 

existence of a direct connection between pseudo-Jacobi and 



6 
 

Hermitian polynomials. 

Research methods. Within the scope of the objectives and 

tasks set in the dissertation work, researches were carried out with the 

help of various methods and approaches of theoretical physics, theory 

of special functions, differential equations, orthogonal polynomials 

and mathematical analysis course. 

The basic provisions for defense:  
1. Exact solutions of the Schrödinger equation expressed by the 

Zhu-Kroemer kinetic energy operator within the position-dependent 

mass formalism for harmonic oscillator-type infinite and finite deep 

quantum well models; 

2. Exact solutions of the Schrödinger equation expressed by the 

Gora-Williams kinetic energy operator within the position-dependent 

mass formalism for a harmonic oscillator-type infinitely deep 

quantum well both under the influence of an external gravitational 

field and in the absence of such influence; 

3. Exact solutions of the Schrödinger equation expressed by the 

kinetic energy operator compatible with Galilean invariance within 

the position-dependent mass formalism for a harmonic oscillator-type 

infinitely deep quantum well both under the influence of an external 

gravitational field and in the absence of such influence; 

4. Exact limit relations restored by the disappearance of 

confinement between exact solutions of harmonic oscillatory 

quantum well models of the Schrödinger equation expressed by Zhu-

Kroemer, Gora-Williams and Galilean invariance kinetic energy 

operators within the position-dependent mass formalism and the 

known non-relativistic canonical quantum harmonic oscillator; 

5. A new limit relation showing the existence of a direct 

connection between pseudo-Jacobi and Hermitian polynomials.  

Scientific novelties of the dissertation:  
-Within the position-dependent mass formalism, the 

Schrödinger equation expressed by the Zhu-Kroemer kinetic energy 

operator is exactly solved for harmonic oscillator-type infinite and 

finite deep quantum well models, and the nonlinear energy spectrum 

and the wave of stationary states expressed by Gegenbauer, Jacobi 

and pseudo-Jacobi polynomials obvious images of the function have 
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been found[3]; 

-It was observed that the reduced frequency of the nonlinear 

energy spectrum, which was found by exactly solving  Schrödinger 

equation expressed by the Zhu-Kroemer kinetic energy operator for 

the model of harmonic oscillator-type infinite deep quantum wells, 

depends on the confinement parameter and increases sharply when 

this parameter approaches zero [8], [9]; 

-The Schrödinger equation, expressed by the kinetic energy 

operator of Gore-Williams and the kinetic energy compatible with 

Galilean invariance within the position-dependent mass formalism, 

has been exactly solved for a harmonic oscillator-type infinite deep 

quantum well both under the influence of an external gravitational 

field and in the absence of such influence and exact expressions of 

both the nonlinear energy spectrum and the wave functions of 

stationary states expressed by Gegenbauer and Jacobi polynomials 

have been found [1], [7]; 

-From the comparison of the energy spectra of the Schrödinger 

equations expressed with the Gore-Williams kinetic energy operator 

and the Galilean invariance kinetic energy operator within the 

position-dependent mass formalism, it was observed that the energy 

spectrum of the model expressed with the Galilean invariance kinetic 

energy operator always takes larger values [2], [5]; 

-Within the position-dependent mass formalism, the exact 

solutions of the Schrödinger equation for the harmonic oscillator-type 

quantum well models, expressed by Zhu-Kroemer, Gora-Williams 

kinetic energy operators and the kinetic energy operator compatible 

with Galilean invariance has been exactly solved and  restored by the 

disappearance of the confinement between the exact solutions of the 

known non-relativistic canonical quantum harmonic oscillator limit 

relations are calculated exactly [4]; 

-A new limit relation which shows the existence of a direct 

relationship between pseudo-Jacobi and Hermitian polynomials, was 

found, and the correctness of this relation was proved mathematically 

[6], [10]. 

Theoretical and practical significance of the research.  
One-dimensional quantum harmonic oscillator models whose 
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wave functions is zero at a finite value of the position, that is, with the 

confinement effect, if they are exactly solved, are very important for 

the development of modern nano-scale physics and technologies in 

various directions. In the current dissertation work, the nonlinear 

energy spectra and wave functions of stationary states found by 

exactly solving for infinite and finite deep quantum wells whose 

profile is in the form of a harmonic oscillator are of great practical 

importance in explaining the various characteristics of modern nano-

scale structures with a non-rectangular profile obtained 

experimentally. On the other hand, the exact solutions of the 

mentioned confinement effect problems found in the external 

gravitational field may play a very important role in the estimation of 

nonlinear optical parameters of many heterostructures with 

confinement effect in the future. The direct limit relationship found 

between pseudo-Jacobi and Hermitian polynomials and proved to be 

correct by us while solving the problems of quantum mechanics is of 

great interest from the point of view of mathematics for updating and 

expanding the known characteristics for special functions and 

orthogonal polynomials. 

Approbation and application.  

The main provisions of the dissertation work and the obtained 

scientific results were widely covered and discussed at the following 

scientific meetings, seminars and conferences: 

• 7th International Scientific and Practical Conference “Science 

and Practice: Introduction to Modern Society” (Manchester, UK, 6-

8.10.2020) 

• 13th International Scientific and Practical Conference 

“Science and Practice: Implementation in Modern Society” (October 

16-18, 2022, Manchester, UK) 

• II Republican Scientific Conference “Fundamental Problems 

of Mathematics and the Application of Intelligent Technologies in 

Education.” (Sumgait State University, December 15-16, 2022, 

Sumgait, Azerbaijan) 

The name of the organization in which the dissertation work 

is completed: 

 The dissertation work was completed in the “Quantum 
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Informatics” laboratory of the Institute of Physics of the Ministry of 

Science and Education of the Republic of Azerbaijan. 

Volume, structure and main content of the dissertation.  
The dissertation consists of an introduction, 4 chapters, a 

conclusion and a list of references, occupies 151 pages, written in A4 

format. The main part of the work (without figures, tables, graphs and 

bibliography) 234,493 (including Introduction - 1467, Chapter I - 

42,000, Chapter II - 90,000, Chapter III - 64,000, Chapter IV - 32,000, 

Conclusions - 5026 ) - sign. The list of references includes 106 named 

sources cited in the dissertation. The dissertation contains 6 

photographs reflecting the results obtained. 

 

THE CONTENT OF THE WORK 

 

The introduction indicates the relevance of the topic and the 

degree of development, the goals and objectives of the research, 

research methods, the main defended provisions, scientific novelty, 

theoretical and practical significance of the research, a review of the 

work, and provides extensive information about research methods. 

The first chapter of the dissertation is mainly of an overview 

nature and talks about what approaches exist in quantum mechanics 

for quantizing between momentum and coordinate, and then, based 

on these approaches, how to build models of the problem 

nonrelativistic harmonic oscillator with exact solutions, discusses the 

formalism of theposition-dependent band structure in various types of 

solids and its generalization to the case of effective mass, as well as 

the limitation effect in nonrelativistic quantum mechanics.  

The first paragraph briefly explains the differences between 

canonical and non-canonical approaches in non-relativistic quantum 

mechanics. The next paragraph explains how exactly solvable models 

of the linear harmonic oscillator problem are constructed in canonical 

and non-canonical approaches of nonrelativistic quantum mechanics. 

The third paragraph of this chapter reviews some well-known 

experiments that can be explained by the position-dependent variable 

zone structure formalism in various types of solids, and explains 

under what conditions the variable zone structure formalism 
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generalizes to the case of effective mass.  The last paragraph explains 

how the confinement effect occurs in non-relativistic quantum 

mechanics and how important this effect is in solid state physics and 

nanotechnology, and then presents some calculations of how the 

measurements manifest themselves quantitatively. 

The second chapter of the dissertation is devoted to the 

construction of an exact solvable model of the Zhu-Kroemer 

confinement of a nonrelativistic linear harmonic oscillator in the 

canonical approach. Considering that the presented model has a 

confinement effect, i.e. limited, then first of all, ways to achieve the 

confinement effect are shown. To this end, the first paragraph 

explains some of the mathematical details of the kinetic energy 

generalization for the position-dependent effective mass, and then, 

given the kinetic energy generalization, the position-dependent 

effective mass is also considered in the quantum harmonic oscillator 

potential, and in the second point, both infinitely high and finite for a 

high-potential well, this problem is solved exactly in terms of 

Gegenbauer and pseudo-Jacobian polynomials [3].  

The effective mass M(x) varies depending on the coordinate and 

was proposed by Zhu-Kroemer1. 

�̂�0
𝐽𝐾  = −

ℏ2

2

1

√𝑀(𝑥)

𝑑2

𝑑𝑥2
1

√𝑀(𝑥)
                                (1) 

Using the kinetic energy operator, the Hamilton operator for a 

nonrelativistic linear harmonic oscillator is written as: 

 

�̂�𝐽𝐾 = −
ℏ2

2

1

√𝑀(𝑥)

𝑑2

𝑑𝑥2
1

√𝑀(𝑥)
+
𝑀(𝑥)𝜔2𝑥2

2
.                  (2)  

Here 𝑉(𝑥) is the potential of the nonrelativistic linear harmonic 

oscillator under study, defined as: 

𝑉(𝑥) = {
𝑀(𝑥)𝜔2𝑥2

2
∞,

,     
−𝑎 < 𝑥 < 𝑎

𝑥 = ±𝑎.
                          (3) 

                                                           
1 Lima, R. F., Vieira, M., Furtado, C. Yet another position dependent mass quantum 

model // Journal of Mathematical Physics, -2012. 53, - p. 072101  
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 From this statement it is clear that a quantum system behaving 

as a linear harmonic oscillator is completely limited by two infinitely 

high fences at coordinate values x=±a, and this limitation should be 

slightly reflected in the analytical expression effective mass M(x) 

depending on the coordinate . Therefore, in order to determine the 

type of manifestation of the function M≡M(x), we first impose the 

following conditions on it: 

●The effective mass M(x), depending on the coordinate, must 

coincide with the constant mass m0 in the case of x=0; 

●The effective mass M(x), depending on the coordinate, should 

restore the constant mass m0 in the limiting case a→∞; 

● In connection with the determination of the effective mass 

depending on the coordinate M(x), the confinement effect should be 

observed at values of the coordinate x=±a. 

● The Schrödinger equation with the Zhu-Kroemer kinetic 

energy operator must be solved exactly, and its solution must coincide  

with the solution of the non-relativistic model of an infinite harmonic  

oscillator in the limiting case a→∞. 

Given the above conditions, we can write the following 

expression for the coordinate-dependent effective mass M(x) 

satisfying these conditions: 

𝑀 ≡ 𝑀(𝑥) =
𝑎2𝑚0

𝑎2 − 𝑥2
.                                     (4) 

After taking into account expressions (3) and (4) in expression (2) and 

making the necessary simplifications, the Hamilton operator will take 

the following form: 

�̂�𝐽𝐾 = −
ℏ2

2𝑀
[
𝑑2

𝑑𝑥2
−

2𝑥

𝑎2 − 𝑥2
𝑑

𝑑𝑥
−

1

𝑎2 − 𝑥2
−

𝑥2

(𝑎2 − 𝑥2)2
] 

+
𝑚0𝜔

2𝑎2𝑥2

2(𝑎2 − 𝑥2)
.   (5) 

Given this statement, we can write the Schrödinger equation, which 

is a second order differential equation, as follows: 

[
𝑑2

𝑑𝑥2
−

2𝑥

𝑎2 − 𝑥2
𝑑

𝑑𝑥
−

1

𝑎2 − 𝑥2
−

𝑥2

(𝑎2 − 𝑥2)2
]𝜓 
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+(
2𝑚𝑎2𝐸

ℏ2(𝑎2 − 𝑥2)
−

𝑚𝜔2𝑎2𝑥2

ℏ2(𝑎2 − 𝑥2)2
)𝜓 = 0.     (6) 

 To exactly solve the equation, we will use the Nikiforov-

Uvarov method, which is used when solving second-order differential 

equations. Finally, the following nonequidistant energy spectrum for 

the Zhu-Kroemer limitation model of a nonrelativistic linear 

harmonic oscillator: 

𝐸 ≡  𝐸𝑛
𝐽𝐾 = ℏ√𝜔2 +

ℏ2

𝑚2𝑎4
(𝑛 +

1

2
) +

ℏ2

2𝑚𝑎2
(𝑛2 + 𝑛 + 1)  (7)  

and we obtain the following expression for the wave functions of 

stationary states [3]: 

𝜓 ≡  𝜓𝑛
𝐽𝐾(𝑥) = 𝐶𝑛

𝐽𝐾 (1 −
𝑥2

𝑎2
)

1
2
√𝑚

2𝜔2𝑎4

ℏ2
+1

𝐶𝑛

(√
𝑚2𝜔2𝑎4

ℏ2
+1+

1
2
)

(
𝑥

𝑎
), 

  (8) 

where the hypergeometry 𝐶𝑛
(�̅�)
(𝑥)    is  Gegenbauer polynomials, 

expressed by the functions 𝐹12   as follows: 

𝐶𝑛
(�̅�)
(𝑥) =

(2�̅�)𝑛
𝑛!

 2𝐹1 (
−𝑛, 𝑛 + 2�̅�

�̅� +
1
2

;  
1 − 𝑥

2
) , �̅� ≠ 0         (9) 

the normalization coefficient 𝑐𝑛
𝐽𝐾

 is defined as: 

𝑐𝑛
𝐽𝐾 = 2

√𝑚
2𝜔2𝑎4

ℏ2
+1
Г(√

𝑚2𝜔2𝑎4

ℏ2
+ 1

+
1

2
)

√
  
  
  
  
  

(𝑛 + √𝑚
2𝜔2𝑎4

ℏ2
+ 1 +

1
2)𝑛!

𝜋𝑎Г(𝑛 + 2√
𝑚2𝜔2𝑎4

ℏ2
+ 1 + 1)

, (10) 

and is found from the condition of orthogonality of the Gegenbauer 

polynomials2 𝐶𝑛
(�̅�)
(𝑥), satisfied for �̅� > −

1

2
  and �̅� ≠ 0. 

                                                           
2 Koekoek, R. Hypergeometric Orthogonal Polynomials and Their q-Analogues/ R. 



13 
 

∫(1 − 𝑥2
1

−1

)�̅�−
1
2𝐶𝑚

(�̅�)
(𝑥)𝐶𝑛

(�̅�)
(𝑥)𝑑𝑥 =

𝜋Г(𝑛 + 2�̅�)21−2�̅�

{Г(�̅�)}
2
(𝑛 + �̅�)𝑛!

𝛿𝑚𝑛.  (11) 

Therefore, in the coordinate representation, the wave 

functions of stationary states (8) are also orthogonal in the interval 

 −𝑎 < 𝑥 < 𝑎: 

∫[𝜓𝑚(𝑥)]
∗

𝑎

−𝑎

𝜓𝑛
𝐽𝐾(𝑥)𝑑𝑥 = 𝛿𝑚𝑛.                      (12) 

Now let us partially change the requirement for the potential 

𝑉(𝑥) of the quantum system under study as follows. Consider that our 

potential is the potential of a harmonic oscillator, the mass of which 

varies depending on the coordinate: 

𝑉(𝑥) =
𝑀(𝑥)𝜔2𝑥2

2
,                                           (13) 

however, in the case of  𝑥 → ±∞ the potential behaves as  
𝑚0𝜔

2𝑎2

2
. 

That is, in fact, the dependence of the mass on the position should be 

introduced in such a way that this time, instead of infinitely high 

walls, two finite barriers arise and our potential becomes a finite 

quantum hole with a non-rectangular profile. The fact that the 

potential behaves differently than before requires the definition of 

new conditions for the mass 𝑀(𝑥), different from the previous ones: 

 -The position-dependent effective mass 𝑀(𝑥)  must be equal to the 

constant effective mass 𝑚0 at the origin 𝑥 = 0; 

-The position-dependent effective mass 𝑀(𝑥) should become zero at 

coordinate values  𝑥 = ±∞. 

-The Schrödinger equation corresponding to the free Hamiton 

operator  and potential (13) must be solved exactly to analytically 

express the position-dependent effective mass 𝑀(𝑥).                                           
Let us write the analytical expression for the position-dependent 

effective mass 𝑀(𝑥), satisfying the above conditions, as follows: 

𝑀 ≡ 𝑀(𝑥) =
𝑎2𝑚0

𝑎2+𝑥2
.                               (14) 

                                                           
Koekoek, P.A Lesky, R.F Swarttouw // - Springer-Verlag Berlin Heidelberg, - 2010, 

578 p 
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Let us find obvious expressions for the wave functions and energy 

spectrum of stationary states by exactly solving  Schrödinger equation 

corresponding to the free Hamilton operator(1), the potential(3)  and 

the analytical expression for the position-dependent effective mass 

𝑀(𝑥) (14). If we write the corresponding Schrödinger function for 

this, 

−
ℏ2

2𝑀
[
𝑑2

𝑑𝑥2
+

2𝑥

𝑎2 + 𝑥2
𝑑

𝑑𝑥
+

1

𝑎2 + 𝑥2
−

𝑥2

(𝑎2 + 𝑥2)2
]𝜓𝐽𝐾(𝑥) 

+
𝑎2𝑚𝜔0

2𝑥2

2(𝑎2 + 𝑥2)
𝜓𝐽𝐾(𝑥) =  𝐸𝐽𝐾𝜓𝐽𝐾(𝑥)                (15) 

By solving this equation by the Nikiforov-Uvarov method3, 

the resulting second-order differential equation can be exactly solved 

by direct comparison with the following well-known second-order 

differential equation for pseudo-Jacobi polynomials P𝑛(ξ, 𝑣, 𝑁): 
(1 + 𝜉2)�̅�′′ − 2(𝜈 − 𝑁𝜉)�̅�′ + 𝑛(2𝑁 − 𝑛 + 1)�̅� = 0,        (16)  

  �̅� = 𝑃𝑛(𝜉, 𝑣, 𝑁).                                   (16. 𝑎) 
From this comparison we find that the energy spectrum of 𝐸𝐽𝐾 

is nonequidistant and finite: 

𝐸𝐽𝐾 = ℏ𝜔0
(𝑁 + 1) (𝑛 +

1
2) − (

𝑛 + 1
2 ) −

1
2

√(𝑁 + 1)2 − 1
, 

 

𝑛 = 0, 1, 2, 3, … ,𝑁.                     (17) 
And 𝜓𝐽𝐾(𝑥), which are wave functions of stationary states, 

are expressed through pseudo-Jacobi polynomials in the following 

order: 

�̃�𝐽𝐾(𝑥) = 

𝑐𝑛
𝐽𝐾 (1 +

λ0
2𝑥2

√(𝑁 + 1)2 − 1
)

−
𝑁+1
2

𝑃𝑛 (
λ0𝑥

[(𝑁 + 1)2 − 1]
1
4

, 0, 𝑁). 

Here 𝑃𝑛(𝜉, 𝑣, 𝑁) are pseudo-Jacobi polynomials defined by 

                                                           
3 Nikiforov, A.F. Special Functions of Mathematical Physics: A Unified 

Introduction with Applications / A.F. Nikiforov, V.B. Uvarov, - Springer Basel AG, 

- 1988. 427 p. 
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the hypergeometric function 𝐹12  as follows:  

 

𝑃𝑛(𝑥, 𝑣, 𝑁) 

=
(−2𝑖)𝑛(−𝑁 + 𝑖𝑣)𝑛
(𝑛 − 2𝑁 − 1)𝑛

𝐹12 (
−𝑛, 𝑛 − 2𝑁
−𝑁 + 𝑖𝑣

; 
1 − 𝑖𝑥

2
),    (18) 

𝑛 = 0, 1, 2, … ,𝑁.  

 �̃�𝐽𝐾(𝑥)  is orthonormalized, and the normalization parameter 𝑐𝑛
𝐽𝐾

 is 

found from the following orthogonality condition for pseudo-

Jacobian polynomials: 

1

2𝜋
∫ (1 + 𝑥2)−𝑁−1
+∞

−∞

𝑒2𝑣∙𝑎𝑟𝑐𝑡𝑎𝑛𝑥𝑃𝑚(𝑥, 𝑣, 𝑁)𝑃𝑛(𝑥, 𝑣, 𝑁)𝑑𝑥 

=
Г(2𝑁 + 1 − 2𝑛)Г(2𝑁 + 2 − 2𝑛)22𝑛−2𝑁−1𝑛!

Г(2𝑁 + 2 − 𝑛)|Г(𝑁 + 1 − 𝑛 + 𝑖𝑣)|2
𝛿𝑚𝑛.    (19) 

Its obvious picture is this: 

𝑐𝑛
𝐽𝐾 =

Г(𝑁 − 𝑛 + 1)

2𝑛−𝑁Г(2𝑁 − 2𝑛 + 1)
√

Г(2𝑁 − 𝑛 + 1)

𝜋𝑎𝑁(2𝑁 − 2𝑛 + 1)𝑛!
.    (20) 

The third paragraph of this chapter is more about the recently 

discovered property of orthogonal polynomials, which 

mathematically arises after the exact solution in the second paragraph. 

The new result mentioned is to show the existence of a hitherto 

unknown direct limit connection between the orthogonal pseudo-

Jacobi and Hermite polynomials and to prove its correctness.  

Hermite polynomials are considered the simplest polynomials 

among the polynomials included in the Askey scheme of orthogonal 

polynomials, and are expressed by hypergeometric functions of type 

𝐹02
  as follows: 

𝐻𝑛(𝑥) = (2𝑥)𝑛 𝐹0 (
−

𝑛

2
; −

𝑛−1

2
; −

1

𝑥2

−
)2

 , 𝑛 = 0,1,2, …. (21) 

Here 𝐹𝑠𝑟
  is a hypergeometric function of type, defined as 

follows: 

𝐹𝑠𝑟
 (

𝑎1, ⋯ , 𝑎𝑟
𝑏1, ⋯ , 𝑏𝑠

; 𝑥) = ∑
(𝑎1,⋯,𝑎𝑟)𝑘

(𝑏1,⋯,𝑏𝑠)𝑘

𝑥𝑘

𝑘!

∞
𝑘=0 , (22) 

and by appointment 
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(𝑎1,⋯ , 𝑎𝑟)𝑘 = (𝑎1)𝑘⋯(𝑎𝑟)𝑘, 

 

(𝑎)𝑘 is the Pohammer symbol and has the following analytical 

expression: 

(𝑎)0 = 1 və (𝑎)𝑘 = 𝑎(𝑎 + 1)(𝑎 + 2)⋯(𝑎 + 𝑘 − 1), 𝑘 = 1,2,3, ….

  (23) 

It is well known from the theory of special functions that if at 

least one of the numbers 𝑎𝑖 defining the products of the Pohammer 

symbols in the copy of the expression (22) is equal to −𝑛, where  𝑛 is 

a positive integer, then define the hypergeometric function 𝐹𝑠𝑟
 . The 

infinite series will turn into a finite sum by truncating at the positive 

integer 𝑛  instead of infinity, and the hypergeometric function 𝐹𝑠𝑟
  will 

be a polynomial of the variable 𝑥. 

  The Hermite polynomials defined by the formula (21) are 

exact solutions of the following differential equation of second 

order:in dəqiq həllidirlər: 

𝑦′′(𝑥) − 2𝑥 ∙ 𝑦′(𝑥) + 2𝑛 ∙ 𝑦(𝑥) = 0, 𝑦(𝑥) = 𝐻𝑛(𝑥). (24) 

Hermite polynomials satisfy the following orthogonality 

condition for all values of the variable 𝑥 in the real domain: 
1

√𝜋
∫ 𝑒−𝑥

2
𝐻𝑚(𝑥)𝐻𝑛(𝑥)𝑑𝑥

∞

−∞
= 2𝑛𝑛! 𝛿𝑚𝑛.  (25) 

 Pseudo-Jacobi polynomials, as we mentioned, are orthogonal 

polynomials expressed by 𝐹12  type hypergeometric functions and are 

defined as follows: 

𝑃𝑛(𝑥; 𝜈, 𝑁) =
(−2𝑖)𝑛(−𝑁 + 𝑖𝜈)𝑛
(𝑛 − 2𝑁 − 1)𝑛

𝐹1 (
−𝑛; 𝑛 − 2𝑁 − 1

−𝑁 + 𝑖𝜈
;
1 − 𝑖𝑥

2
) ,2

  

𝑛 = 0,1,2, … ,𝑁.(26) 

 Here, 𝜈 is an arbitrary real number and 𝑁 is an arbitrary natural 

number. The mentioned polynomials are exact solutions of the 

following second order differential equation: 

 

(1 + 𝑥2)𝑦′′(𝑥) + 2(𝜈 − 𝑁𝑥)𝑦′(𝑥) − 𝑛(𝑛 − 2𝑁 − 1)𝑦(𝑥) = 0, 

 𝑦(𝑥) = 𝑃𝑛(𝑥; 𝜈, 𝑁). (27) 

 It can be seen from expression (26) that the main difference 

between pseudo-Jacobi polynomials and Hermitian polynomials is 

that the number 𝑛, which determines the general formulation of the 
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polynomial, is finite. However, pseudo-Jacobi polynomials, like 

Hermitian polynomials, satisfy the following orthogonality condition 

for all values of the variable 𝑥 in the real domain: 

1

2𝜋
∫(1 + 𝑥2)−𝑁−1𝑒2𝜈 arctan𝑥𝑃𝑚(𝑥; 𝜈, 𝑁)𝑃𝑛(𝑥; 𝜈, 𝑁)𝑑𝑥

∞

−∞

= 

Γ(2𝑁+1−2𝑛)Γ(2𝑁+2−2𝑛)22𝑛−2𝑁−1𝑛!

Γ(2𝑁+2−𝑛)|Γ(𝑁+1−𝑛+𝑖𝜈)|2
𝛿𝑚𝑛.     (28) 

            As mentioned above, he introduced a new limit relation 

between pseudo-Jacobi polynomials and Hermitian polynomials. The 

mathematical expression of this relationship is as follows: 

lim
𝑁→∞

𝑁
𝑛

2𝑃𝑛 (
𝑥

√𝑁
;
𝜈

𝑁
, 𝑁) =

1

2𝑛
𝐻𝑛(𝑥).            (29) 

Later, showed the existence of two different limit relations 

between pseudo-Jacobi polynomials and Hermite polynomials, which 

have the following expressions: 

lim
𝑁→∞

𝑁
𝑛

2𝑃𝑛 (
𝑥

√𝑁
; 𝜈, 𝑁) =

1

2𝑛
𝐻𝑛(𝑥),  (30) 

lim
𝑁→∞

𝑁
𝑛

2𝑃𝑛 (
𝑥

√𝑁
; 𝜈√𝑁,𝑁) =

1

2𝑛
𝐻𝑛(𝑥 − 𝜈). (31) 

 Let's analyze the limit relations (30) and (31) mutually. First, 

consider that 

𝑃0(𝑥; 𝜈, 𝑁) = 1, 𝑃1(𝑥; 𝜈, 𝑁) = 𝑥 −
𝜈

𝑁
, …,            (32) 

𝐻0(𝑥) = 1, 𝐻1(𝑥) = 2𝑥, ….   (33) 

In the above expressions, although the expressions of both 

polynomials coincide in the case of 𝑛 = 0, in the case of 𝑛 = 1 these 

values differ and the pseudo-Jacobi polynomial already depends on 

both 𝜈 and 𝑁. Let's look at the comparative analysis of the limits (30) 

and (31) at the value 𝑛 = 1. From expression (30) we get that: 

lim
𝑁→∞

√𝑁 (
𝑥

√𝑁
−

𝜈

𝑁2
) = 𝑥.                  (34) 

 If we take into account that here 𝜈 is an arbitrary real number, 

as mentioned above, then the truth of expression (34) will not be 

violated even under the condition 𝜈 → ±∞. This means that the limit 

expression (30) is true for any values of the real parameter 𝜈  [6]. 

 Let us now apply the same approach to (31). At this time we 

get that 
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lim
𝑁→∞

√𝑁 (
𝑥

√𝑁
−

𝜈

𝑁
) = 𝑥.            (35) 

 Another writting of this expression 

lim
𝑁→∞

𝜈

√𝑁
= 0.                (36) 

From here, we clearly see that the truth of expression (36) is 

violated at values of 𝜈 → ±∞. That is, from the comparative analysis, 

we conclude that the limit given by the expression (36) is true only 

for finite values of the real parameter 𝜈 in a special case [10]. 

It should be noted that for the 𝑛 = 1 case we have already 

obtained the correct answer as a result of the comparative analysis, so 

we do not investigate the more complex limits for the highly ordered 

𝑛 > 1 cases. However, it is clear that this type of analysis will lead to 

the same result. 

The third chapter of the dissertation is dedicated to the 

exactly solvable Gora-Williams confinement model of the non-

relativistic linear harmonic oscillator in the canonical approach [1]. 

The Gora-Williams kinetic energy operator is the Hermite 

operator and is defined as follows: 

 

 

�̂�0
𝑄𝑈 = −

ℏ2

4
[
1

𝑀(𝑥)

𝑑2

𝑑𝑥2
+
𝑑2

𝑑𝑥2
1

𝑀(𝑥)
].                 (37) 

  If we write the potential of the considered non-relativistic 

linear harmonic oscillator as follows: 

𝑉(𝑥) = { 
𝑀(𝑥)𝜔2𝑥2

2
            |𝑥| ≤ 𝑎,

∞,                             |𝑥| > 𝑎,

                            (38) 

in this case, we will actually get an oscillator model subject to the 

confinement effect at 𝑥 = ±𝑎 values and whose effective mass varies 

depending on the coordinate. In order to achieve the confinement 

effect, we first choose the following analytical expression for the 

function 𝑀(𝑥), which is the position-dependent effective mass of the 

oscillator: 

𝑀 ≡ 𝑀(𝑥) =
𝑎2𝑚0

𝑎2 − 𝑥2
 .                                  (39) 
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It can be checked that expression (3.3) satisfies the following 

conditions: 

𝑀(±𝑎) = ∞,      𝑀(0) = 𝑚0  lim
𝑎→∞

𝑀(𝑥) = 𝑚0.   

Then, taking into account the expression (37) and the fact that 

the momentum operator in the canonical approach is defined as  �̂�𝑥 =

−𝑖ℏ
𝑑

𝑑𝑥
, for the Hamiltonian operator of the considered quantum 

oscillator model we get the expression: 

�̂�𝑄𝑈 = −
ℏ2

4
[
1

𝑀(𝑥)

𝑑2

𝑑𝑥2
+
𝑑2

𝑑𝑥2
1

𝑀(𝑥)
+
𝑀(𝑥)𝜔2𝑥2

2
]   (40) 

 

After simple calculations, we can write the corresponding 

Schrödinger equation as: 

[−
ℏ2

2𝑀
(
𝑑2

𝑑𝑥2
−
𝑀′

𝑀

𝑑

𝑑𝑥
+ (

𝑀′

𝑀
)

2

−
1

2

𝑀′′

𝑀
)+

𝑀𝜔2𝑥2

2
]𝜓

= 𝐸𝜓.   (41) 
Let's compare the second-order differential equation obtained 

by performing a series of mathematical calculations with the 

Nikiforov-Uvarov method with the second-order differential equation 

of the Gegenbauer polynomial: 

(1 − 𝑥2)�̅�′′ − (2�̅� − 1)𝑥�̅�′ + 𝑛(𝑛 + 2�̅�)�̅� = 0.          (42)  

Here, �̅� = 𝐶𝑛
�̅�(𝑥) are Gegenbauer polynomials. After simple 

calculations, we obtain the following expression for the energy 

spectrum of the Gore-Williams confinement model of the considered 

non-relativistic linear harmonic oscillator: 

 

𝐸 ≡ 𝐸𝑛
𝑄𝑈 = ℏ𝜔 (𝑛 +

1

2
) +

ℏ2

2𝑚0𝑎2
(𝑛2 + 𝑛 + 1).                 (43) 

The expression for the wave functions of the stationary states 

of the oscillator will be as follows: 

 𝜓 ≡ 𝜓𝑛
𝑄𝑈(𝑥) = 𝑐𝑛

𝑄𝑈 (1 −
𝑥2

𝑎2
)

𝑚0𝜔𝑎
2

2ℏ
𝐶𝑛
(
𝑚0𝜔𝑎

2

ℏ
+
1

2
)
(
𝑥

𝑎
).           (44)  

Here 𝑐𝑛
𝑄𝑈

  is the normalization factor, defined as: 
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𝑐𝑛
𝑄𝑈 = 2

𝑚0𝜔𝑎
2

ℏ Г (
𝑚0𝜔𝑎

2

ℏ
+
1

2
)√

(𝑛 +
𝑚0𝜔𝑎

2

ℏ
+
1
2)𝑛!

𝜋𝑎Г (𝑛 +
2𝑚0𝜔𝑎2

ℏ
+ 1)

 ,       (45) 

𝐶𝑛
(�̅�)
(𝑥)  are Gegenbauer polynomials defined by 𝐹12  

hypergeometric functions as follows: 

𝐶𝑛
(�̅�)
(𝑥) =

(2�̅�)
𝑛

𝑛!
𝐹12 (−𝑛,𝑛+2�̅�

�̅�+1/2
 ;  

1−𝑥

2
) ,    �̅� ≠ 0.         (46) 

It can be easily shown that in the limit 𝑎 → ∞ that is, when the 

confinement effect disappears, the expressions (43) and (44) exactly 

restore the expressions of the energy spectrum of the infinite 

harmonic oscillator and the wave functions of the stationary states, 

respectively. 

Now, let's put different requirements on the potential 𝑉(𝑥) of 

the investigated quantum system. Let's say that the harmonic 

oscillator potential, whose mass varies depending on the position, is 

given as follows: 

𝑉(𝑥) =
𝑀(𝑥)𝜔2𝑥2

2
,                                 (47) 

however, in the case of 𝑥 → ±∞ the potential behaves as  
𝑚0𝜔

2𝑎2

2
 . 

  The fact that the potential behaves differently than before 

requires that we write the analytical expression of the coordinate-

dependent effective mass 𝑀(𝑥) as: 

𝑀 ≡ 𝑀(𝑥) =
𝑎2𝑚0

𝑎2 + 𝑥2
,                               (48) 

For simplicity, we will assume that 𝑎 > 0. Then, we can 

easily show that 

𝑀(0) = 𝑚0              lim
 𝑥=±∞

𝑎2𝑚0

𝑎2+𝑥2
= 0.  

Given these conditions, we can write the corresponding 

Schrödinger equation as: 

−
ℏ2

4
[
1

𝑀(𝑥)

𝑑2

𝑑𝑥2
+
𝑑2

𝑑𝑥2
1

𝑀(𝑥)
]𝜓𝑄𝑈(𝑥) +

𝑀(𝑥)𝜔0
2𝑥2

2
𝜓𝑄𝑈(𝑥) 

= 𝐸𝑄𝑈𝜓𝑄𝑈(𝑥).   (49)  



21 
 

 

After a series of mathematical calculations, the equation 

obtained from the solution of the Schrödinger equation, which we are 

looking at, can be solved exactly by directly comparing it with the 

following well-known second differential equation for pseudo-Jacobi 

polynomials P𝑛(ξ, 𝑣, 𝑁). 
(1 + 𝜉2)�̅�′′ − 2(𝜈 − 𝑁𝜉)�̅�′ + 𝑛(2𝑁 − 𝑛 + 1)�̅� = 0,   

 �̅� = 𝑃𝑛(𝜉, 𝑣, 𝑁).        (50) 

From this comparison, we can easily see that the 𝐸𝑄𝑈 energy 

spectrum is non-equidistant and finite:         

𝐸𝑄𝑈 = ℏ𝜔0
(𝑁 + 1) (𝑛 +

1
2) − (

𝑛 + 1
2 ) −

1
2

𝑁 + 1
, 

  𝑛 = 0, 1, 2, 3, … ,𝑁.    (51) 
The wave functions of stationary states 𝜓𝑄𝑈(𝑥), are expressed 

by means of pseudo-Jacobi polynomials in the following order: 

�̃�𝑄𝑈(𝑥) = 𝑐𝑛
𝑄𝑈 (1 +

λ0
2𝑥2

𝑁 + 1
)

−
𝑁+1
2

𝑃𝑛 (
λ0𝑥

(𝑁 + 1)
1
2

, 0, 𝑁).   (52) 

Here, 𝑃𝑛(𝜉, 𝑣, 𝑁)  are pseudo-Jacobi polynomials, defined by 

the hypergeometric function 𝐹12 as follows: 

𝑃𝑛(𝜉, 𝑣, 𝑁) =
(−2𝑖)𝑛(−𝑁 + 𝑖𝑣)𝑛
(𝑛 − 2𝑁 − 1)𝑛

𝐹12 (
−𝑛, 𝑛 − 2𝑁
−𝑁 + 𝑖𝑣

; 
1 − 𝑖𝑥

2
),   (53) 

𝑛 = 0, 1, 2, … , 𝑁.   

�̃�𝑄𝑈(𝑥) is orthonormal and the normalization parameter 𝑐𝑛
𝑄𝑈

 is found 

from the following orthogonality condition for pseudo-Jacobi 

polynomials: 

1

2𝜋
∫ (1 + 𝑥2)−𝑁−1
+∞

−∞

𝑒2𝑣∙𝑎𝑟𝑐𝑡𝑎𝑛𝑥𝑃𝑚(𝑥, 𝑣, 𝑁)𝑃𝑛(𝑥, 𝑣, 𝑁)𝑑𝑥 

=
Г(2𝑁 + 1 − 2𝑛)Г(2𝑁 + 2 − 2𝑛)22𝑛−2𝑁−1𝑛!

Г(2𝑁 + 2 − 𝑛)|Г(𝑁 + 1 − 𝑛 + 𝑖𝑣)|2
𝛿𝑚𝑛.   (54) 

The apparent form of the 𝑐𝑛
𝑄𝑈

 normalization parameter is as follows: 
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𝑐𝑛
𝑄𝑈 =

Г(𝑁 − 𝑛 + 1)

2𝑛−𝑁Г(2𝑁 − 2𝑛 + 1)
√

Г(2𝑁 − 𝑛 + 1)

𝜋𝑎𝑁(2𝑁 − 2𝑛 + 1)𝑛!
            (55) 

Also, the position-dependent effective mass is quantized by 

the quantum number 𝑁 of 𝑀(𝑥)-in the following way: 

𝑀𝑁(𝑥) =
𝑁 + 1

𝑁 + 1 + 𝜆0
2𝑥2

𝑚0.                        (56) 

The graph for N=3 values of the potential of the Gora-

Williams kinetic energy operator oscillator model with coordinate-

dependent mass and the energy spectra found from the exact solutions 

corresponding to this potential (𝑚0 = 𝜔0 = ℏ = 1) is depicted. 

 
Fig.1 Graphic representation of the Gora-Williams oscillator model 

with coordinate-dependent mass (47) potential and the energy spectra 

found from exact solutions corresponding to this potential for N=3 

value (𝑚0 = 𝜔0 = ℏ = 1). 
Let's expand these types of oscillator problems with exact 

solutions and when the non-relativistic harmonic oscillator, whose 

effective mass varies depending on the coordinate, is suddenly 

affected by an external gravitational field, find the exact solutions of 

the problem and observe how the external gravitational field changes 

the quantum harmonic oscillator we are studying. 

Before examining the exact solution of a non-relativistic 

quantum harmonic oscillator under the influence of the Gora-Williams 

kinetic energy operator in a gravitational field, let us consider the 

solution of a constant effective mass harmonic oscillator in an external 

gravitational field. Considering the effect of an external uniform 

gravitational field on a non-relativistic linear-harmonic quantum 

oscillator of constant mass, we can write the potential of the oscillator 

as: 
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𝑉(𝑥) =
𝑚0𝜔

2𝑥2

2
+𝑚0𝑔𝑥.                             (57) 

 

Here, 𝑚0 and 𝜔 are the constant effective mass and periodic 

frequency of the non-relativistic quantum harmonic oscillator, 

respectively. In this case, the corresponding Schrödinger equation is 

as follows: 

 

[
�̂�𝑥
2

2𝑚0
+
𝑚0𝜔

2𝑥2

2
+ 𝑚0𝑔𝑥]𝜓(𝑥) = 𝐸𝜓(𝑥).            (58) 

The one-dimensional momentum operator in the canonical approach 

defined as  

�̂�𝑥 = −𝑖ℏ
𝑑

𝑑𝑥
, 

 equation (58) takes the following form: 

−
ℏ2

2𝑚0

𝑑2𝜓(𝑥)

𝑑𝑥2
+ [

𝑚0𝜔
2𝑥2

2
+𝑚0𝑔𝑥]𝜓(𝑥) = 𝐸𝜓(𝑥).     (59) 

 

After some mathematical calculations, we get the following expression 

for the energy spectrum of the harmonic oscillator: 

 

𝐸 = 𝐸𝑛
𝑔
= ℏ𝜔 (𝑛 +

1

2
) −

𝑚0𝑔
2

2𝜔2
, 𝑛 = 0, 1, 2, …   (60) 

Accordingly, the wave function of stationary states is defined by the 

following expression:  

𝜓 ≡ 𝜓𝑛
𝑔(𝑥) =

1

√2𝑛𝑛!
(
𝑚0𝜔

𝜋ℏ
)

1

4
𝑒−

𝑚0𝜔(𝑥+
𝑔

𝜔2
)
2

2ℏ 𝐻𝑛 (√
𝑚0𝜔

ℏ
(𝑥 +

𝑔

𝜔2)) . (61)  

       Now let's examine the effect of the gravitational field on the non-

relativistic quantum harmonic oscillator whose effective mass 

depends on the coordinate. In this case, the potential of the harmonic 

oscillator can be written as: 

𝑉(𝑥) = { 
𝑀(𝑥)𝜔2𝑥2

2
+𝑀(𝑥)𝑔𝑥,   |𝑥| ≤ 𝑎,

∞,                                         |𝑥| > 𝑎.

            (62) 
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Given the expression of the Gora-Williams kinetic energy operator and 

the potential, we can write the complete Hamiltonian operator as 

follows [7]: 

 

�̂�𝑄𝑈 = −
ℏ2

2𝑀
[
𝑑2

𝑑𝑥2
−

𝑀′

𝑀

𝑑

𝑑𝑥
−

1

2

𝑀′′

𝑀
+ (

𝑀′

𝑀
)
2

] +
𝑀𝜔2𝑥2

2
+𝑀(𝑥)𝑔𝑥.        

(63) 

After simple calculations, we get the following expression for the 

energy spectrum of the harmonic oscillator: 

𝐸 ≡ 𝐸𝑛
𝑔𝑄𝑈

= √1

2
+√

1

4
−

𝑔2

𝑎2𝜔4 ℏ𝜔 (𝑛 +
1

2
) +

ℏ2

2𝑚0𝑎2
(𝑛2 + 𝑛 + 1) −

𝑚0𝜔
2𝑎2

2
(1 − √1 −

4𝑔2

𝜔4𝑎2
).  (64)  

And the wave function of the stationary states of the considered 

harmonic oscillator is a 

𝜓 ≡ 𝜓𝑛
𝑔𝑄𝑈(𝑥) = 𝑐𝑛

𝑔𝑄𝑈
(1 −

𝑥

𝑎
)
−𝜅1

(1 +
𝑥

𝑎
)
−𝜅2

𝑃𝑛
(−2𝜅1,−2𝜅2) (

𝑥

𝑎
).    

(65) 

Here, 𝑐𝑛
𝑄𝑈

 

𝒄𝒏
𝒈𝑸𝑼

=
𝟏

𝟐√𝜿+
𝟏
𝟐

√
(𝟐𝒏 + 𝟐√𝜿 + 𝟏)Г(𝒏 + 𝟐√𝜿 + 𝟏)𝒏!

𝒂Г(𝒏 − 𝟐𝜿𝟏 + 𝟏)Г(𝒏 − 𝟐𝜿𝟐 + 𝟏)
         (𝟔𝟔) 

is the normalization factor and is determined from the orthogonality 

condition of Jacobian polynomials as follows: 

∫(1 − 𝑥)𝛼
1

−1

(1 + 𝑥)𝛽 𝑃𝑚
(𝛼,𝛽)(𝑥) 𝑃𝑛

(𝛼,𝛽)(𝑥)𝑑𝑥

=
2𝛼+𝛽+1

2𝑛 + 𝛼 + 𝛽 + 1

Г(𝑛 + 𝛼 + 1)Г(𝑛 + 𝛽 + 1)

Г(𝑛 + 𝛼 + 𝛽 + 1)𝑛!
𝛿𝑚𝑛.     (67) 

The fourth chapter of the dissertation work is devoted to how 

the confinement model of the non-relativistic linear harmonic 

oscillator obeying the Galilean invariance of the kinetic energy 

operator is established in the canonical approach. Therefore, in the 

first paragraph of the present chapter, some properties of the case of 
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Galilean invariance for position-dependent effective mass are first 

explained [8]. 

In the next paragraph, we investigate how to construct different 

kinetic energy operators using a coordinate-dependent mass approach 

compatible with Galilean invariance and find the exact solution of a 

new non-relativistic linear harmonic oscillator model compatible with 

Galilean invariance [2]. 

The analytical expression of the kinetic energy operator for the 

confinement model of a quantum harmonic oscillator compatibble 

with Galilean invariance is chosen as follows based on the extensive 

discussions in the previous paragraph of this chapter44: 

�̂�0
𝑄İ =

1

6
[
1

𝑀(𝑥)
�̂�2 + �̂�

1

𝑀(𝑥)
�̂� + �̂�2

1

𝑀(𝑥)
].           (68) 

Here, M(x) is the pozition-dependent effective mass of the 

oscillator. 

 In this case, we will get an oscillator model that is actually 

subjected to the confinement effect and whose effective mass is 

coordinate dependent, and in this case, the effective mass dependent 

on the coordinate to achieve the confinement effect 

𝑀 ≡ 𝑀(𝑥) =
𝑎2𝑚0

𝑎2 − 𝑥2
                         (69)  

and in this case the Hamiltonian operator of the oscillator can be 

described as follows [5]: 

�̂�𝑄İ = −
ℏ2

6
[
1

𝑀(𝑥)

𝑑2

𝑑𝑥2
+
𝑑

𝑑𝑥

1

𝑀(𝑥)

𝑑

𝑑𝑥
+
𝑑2

𝑑𝑥2
1

𝑀(𝑥)
] 

+
𝑀(𝑥)𝜔2𝑥2

2
.    (70) 

After the necessary calculations, for the energy spectrum of 

the harmonic oscillator 

𝐸𝑛
𝑄İ = ℏ𝜔 (𝑛 +

1

2
) +

ℏ2

2𝑚0𝑎2
𝑛(𝑛 + 1) +

ℏ2

3𝑚0𝑎2
,   (71) 

while for wave functions of stationary states we have received their 

                                                           
4 Levy-Leblond, J.M. Position-dependent effective mass and Galilean invariance // 

Physical Review A, -1995. 52, - p. 1845-1849. 
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statements: 

𝜓𝑛
𝑄İ(𝑥) = 𝑐𝑛 (1 −

𝑥2

𝑎2
)

𝑚0𝜔𝑎
2

2ℏ

𝐶𝑛
(
𝑚0𝜔𝑎

2

ℏ
+
1
2
)
(
𝑥

𝑎
).         (72) 

In the last paragraph of the chapter, the influence of the external 

gravitational field on the considered harmonic oscillator model is 

investigated within the formalism of the variable mass depending on 

the position [5] 

�̂�𝑔𝑄İ = −
ℏ2

6
[
1

𝑀(𝑥)

𝑑2

𝑑𝑥2
+
𝑑

𝑑𝑥

1

𝑀(𝑥)

𝑑

𝑑𝑥
+
𝑑2

𝑑𝑥2
1

𝑀(𝑥)
] +

𝑀(𝑥)𝜔2𝑥2

2
 

+𝑀(𝑥)𝑔𝑥. (73) 
By solving the Schrödinger equation according to the 

Hamiltonian operator, the exact expressions for the energy spectrum 

and the wave functions of the stationary states of the considered 

model are presented [4]: 

𝐸 ≡ 𝐸𝑛
𝑔𝑄𝐼

= ℏ𝜔√
1

2
+√

1

4
−

𝑔2

𝑎2𝜔4 (𝑛 +
1

2
) +

ℏ2

2𝑚0𝑎2
𝑛(𝑛 + 1) +

ℏ2

3𝑚0𝑎2
−𝑚0𝜔

2𝑎2 (
1

2
− √

1

4
−

𝑔2

𝑎2𝜔4).  (74) 

𝜓 ≡ 𝜓𝑛
𝑔𝑄𝐼(𝑥) = 𝑐𝑛

𝑔𝐿
(1 −

𝑥

𝑎
)
−𝜅1

(1 +
𝑥

𝑎
)
−𝜅2

𝑃𝑛
(−2𝜅1,−2𝜅2) (

𝑥

𝑎
) . (75) 

Normalization factor 𝑐𝑛
𝑔𝐺𝐼

: 

𝑐𝑛
𝑔𝑄𝐼

=
1

2√𝜅+
1
2

√
(2𝑛 + 2√𝜅 + 1)Г(𝑛 + 2√𝜅 + 1)𝑛!

𝑎Г(𝑛 − 2𝜅1 + 1)Г(𝑛 − 2𝜅2 + 1)
,    (76) 

 

 𝑃𝑛
(𝛼,𝛽)(𝑥) It is determined from the orthogonality relation of Jacobian 

polynomials [9]. 

As a result, we can say that the considered model of the 

harmonic oscillator is very interesting and important and differs from 

the simple harmonic oscillator in terms of its characteristics. The 

confinement effect and the non-linearity of the energy spectrum allow 

us to say that the model can be widely used in the future. 
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MAIN RESULTS  

 

In the current dissertation work, for the first time, the 

Schrödinger equation describing quantum wells with a non-

rectangular profile for three different kinetic energy operators within 

the framework of the position-dependent mass formalism was 

comparatively exactly solved, and exact expressions of both the 

energy spectrum and the wave function of the stationary states were 

found. The non-rectangular profiles of the quantum wells were 

obtained thanks to the analytical expression of the known harmonic 

oscillator potential. The behavior of the walls of the quantum wells 

with finite and infinite deep quantum wells, that is, the appearance of 

the confinement effect applied to the model, was obtained through the 

selection of analytical expressions of the position-dependent mass in 

a unique way. In general, the following important results were found 

in the dissertation work: 

- Within the position-dependent mass formalism, the 

Schrödinger equation expressed by the Ju-Kroemer kinetic energy 

operator is exactly solved for harmonic oscillator-type infinite and 

finite deep quantum well models, and the nonlinear energy spectrum 

and the wave functions of stationary states expressed by Gegenbauer, 

Jacobi and pseudo-Jacobi polynomials obvious expressions have been 

found; 

- It was observed that the reduced frequency of the nonlinear 

energy spectrum, found by exactly solving the Schrödinger equation 

expressed by the Zhu-Kroemer kinetic energy operator for the model 

of harmonic oscillator-type infinite deep quantum wells, depends on 

the confinement parameter and increases sharply when this parameter 

approaches zero; 

- The Schrödinger equation expressed by the Gore-Williams 

kinetic energy operator and the kinetic energy operator compatible 

with Galilean invariance within the position-dependent mass 

formalism for a harmonic oscillator-type infinite deep quantum well 

is exactly solved both under the influence of an external gravitational 

field and in the absence of such influence, and nonlinear exact  

expressions of the energy spectrum and the wave functions of 
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stationary states expressed by Gegenbauer and Jacobi polynomials 

were found; 

- From the comparison of the energy spectra of the 

Schrödinger equations expressed with the Gore-Williams kinetic 

energy operator and the Galilean invariance kinetic energy operator 

within the position-dependent mass formalism, it was observed that 

the energy spectrum of the model expressed with the Galilean 

invariance kinetic energy operator always takes larger values; 

- Within the framework of the position-dependent mass 

formalism, the limit relations between the exact solutions of the 

harmonic oscillatory quantum well models of the Schrödinger 

equation expressed by Zhu-Kroemer, Gora-Williams and Galilean 

invariance kinetic energy operators restored with the disappearance 

of the confinement and the exact solutions of the known non-

relativistic canonical quantum harmonic oscillator are calculated 

exactly; 

- A new limit relation was found, which shows the existence 

of a direct relationship between pseudo-Jacobi and Hermitian 

polynomials, and the correctness of this relation was proved 

mathematically. 

In the near future, the results listed above may play a major 

role both in the explanation of various characteristics of modern 

nanostructures to the experimentally obtained non-rectangular 

complex profile within the framework of quantum physics, as well as 

in finding direct limits between many orthogonal polynomials that 

have not been known so far. 
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