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GENERAL DESCRIPTION OF THE WORK 

 

Actuality of the work and work done so far. Scientific 

research conducted on the high-density nuclear medium resulting from 

the collision of heavy ions is one of the current research areas in high-

energy physics. The collision of heavy ions leads to the creation of 

various hadrons. These created hadrons interact with each other and 

with the nucleons forming the medium. Unlike electromagnetic 

interaction, the strong interaction processes of hadrons cannot be 

described with the perturbation theory in any energy range. This is 

because the strong coupling constant is sufficiently large in the low-

energy range. Therefore, non-perturbation methods should be used to 

study such issues. One of these methods is holographic quantum 

theory. Holographic theories are based on the principle of holographic 

correspondence. According to the holographic correspondence 

principle, there is correspondence between the gravity theory in the 5-

dimensional Anti-de-Sitter (AdS) space and the gauge field theory 

(CFT) on the boundary of this space in 4 dimensions. Holographic 

correspondence models and theories are applied not only in the physics 

of elementary particles but also in many areas of theoretical physics, 

including the theory of condensed matter. Also, by considering the 

temperature of the hadron medium through holographic quantum 

chromodynamics (QCD), it is possible to study the strong interaction 

processes of hadrons. Studying the temperature dependence of these 

processes is set as the goal within the framework of the dissertation. In 

the dissertation, some issues of strong interaction are theoretically 

analyzed by applying models based on the holographic correspondence 

principle. In addition, the investigation of the properties of the hadron 

medium is also possible within the framework of holographic theory. 

Models built on this theory allow calculating strong interaction issues 

in the 5-dimensional AdS space by preserving properties such as the 

breaking of chiral symmetry and confinement in the existing 4-

dimensional space. 

Based on holographic theory, the AdS/QCD (Anti-de-

Sitter/Quantum Chromodynamics) model is actionive for addressing 

issues such as the study of strongly interacting quark-gluon plasmas, 
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including the calculation of strong coupling constants and form factors 

of hadrons, as well as understanding temperature dependence. The 

strong coupling constants and form factors of hadrons have been 

calculated theoretically based on the QCD formalism and other models, 

and their temperature dependencies have also been studied. 

Investigating the temperature dependence of the coupling of various 

hadrons allows for a clearer understanding of phase transitions 

occurring in the evolution of the Universe and in quark-gluon plasmas. 

Additionally, comparing the temperature dependence of these 

quantities obtained within the framework of holographic models with 

theoretical and experimental values obtained for them in other models 

further increases interest in these issues. 

The object and subject of the research. The object of research 

is the temperature dependence of the interaction of baryons with 

mesons at finite temperatures. The subject of the study is the coupling 

constant and form factors corresponding to interaction peaks of 

nucleons and Δ-baryons with ρ-meson, 𝜔-meson, and 𝒂𝟏-mesons. 

The goals and objectives of the research. 

Within the framework of the soft-wall model of the holographic 

QCD, in a dense nucleon medium at finite temperatures, it is to reveal 

the dependence of the interaction of nucleons with vector mesons on 

the temperature of the medium, and also the dependence of the 

interaction of the baryon with spin 3/2 with vector and axial vector 

mesons on the temperature of the medium. The task is also to analyze 

the temperature dependence of the axial vector form factor and the 

axial radius of the nucleon and to find out how the temperature of the 

medium affects the interaction of hadrons with each other. In order to 

realize these goals, the following issues were studied: 

1. Within the framework of the soft-wall model of AdS/QCD, in 

accordance with the expressions obtained for mesons and baryons at 

finite temperature, to obtain obvious expressions of profile functions 

for vector meson and nucleon fields; 

2. To determine the Lagrangian characterizing the ρ-meson-

nucleon and ω-meson-nucleon interactions within the framework of the 

soft-wall model of the holographic QCD at finite temperature and to 

study their temperature dependence. To compare the results obtained in 
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the soft-wall model at finite temperature with values obtained from 

other theoretical models and experiments; 

3. Within the framework of the soft-wall model of the 

holographic QCD, the expression of the Lagrangian describing the 

interaction of ρ-meson, ω-meson and -meson with ∆-baryons and 

nucleon-∆-baryon-transition interaction of ρ, ω and 𝒂𝟏 mesons is 

determined for the finite temperature case. Solving the Rarita-

Schwinger equation for ∆-baryons at finite temperature. Obtain 

expressions of interaction constants based on corresponding 

Lagrangian, analyze temperature dependences of coupling constants 

and compare with values and results obtained from other theoretical 

models and experiment; 

4. To study the temperature dependence of the axial vector form 

factor of nucleons, the axial vector transition form factor and the radii 

corresponding to these form factors within the framework of the soft-

wall model of the holographic QCD at finite temperature. For this 

purpose, to calculate the expression of the propagator of the axial 

vector meson and to find the expressions of the axial vector meson and 

to find the expressions of the axial vector form factor of nucleons, the 

axial vector transition form factors and their corresponding radii for the 

case with finite temperature 

Research methods. The method of differential equations, 

methods of computing theory, modern programming and computing 

technologies, applied programs were used in the work. 

Defense of the main scientific points: 

1. The numerical value of the ρ-meson-nucleon, ω-meson-

nucleon coupling constant, studied in the thermal dilaton soft-wall 

model of the holographic QCD, depends very weakly on the quark field 

number 𝑁𝑓 and the pion decay constant 𝐹. 

2. 𝜌-meson-𝛥-baryon, 𝜔-meson-𝛥-baryon and 𝑎1-meson-𝛥-

baryon, ρ-meson-nucleon-Δ-baryon, ω-meson-nucleon-Δ-baryon 

transition interaction constants, the axial vector form factor of nucleons 

and the axial radius of nucleons decrease sharply with increasing 

temperature and become zero around the confinement-deconfinement 

phase transition temperature. 

3. The dependence 𝑄2 of the axial vector form factor studied in 
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the soft-wall model of the holographic QCD at a finite temperature is 

close to the results obtained from the hard-wall model of the theory of 

the same name and from the experiment. 

4. In the process of β transformation, the probability of the 

transformation process decreases with the increase of the temperature 

of the nucleon medium. 

Theoretical and practical significance of research. 

1. For the first time in the dissertation, expressions dependent on 

temperature have been derived for the coupling constants of ρ, ω 

meson-nucleon interactions based on the AdS/QCD soft-wall model, 

and the temperature dependence of these constants has been 

investigated. It has been determined that as the temperature increases, 

the values of the coupling constants decrease, approaching zero near 

the confinement-deconfinement phase transition temperature. 

Additionally, based on the comparison of the coupling constants for ρ 

and ω mesons, it has been revealed that isospin symmetry is not broken 

at finite temperatures. 

2. The temperature dependence of the coupling constants for ρ, 

ω, and 𝑎1 meson-𝛥 baryon and 𝜌, 𝜔 meson-nucleon-𝛥 baryon 

transition interactions has been theoretically investigated for the first 

time within the framework of the temperature-introduced soft-wall 

model. It has been observed that as the value of the background scalar 

field increases, the values of these constants decrease, approaching zero 

near the confinement-deconfinement phase transition temperature. 

3. In the context of the soft-wall model at finite temperatures, the 

expression for the propagator of the axial-vector field has been 

obtained. By utilizing the Lagrangian expression characterizing the 

coupling between the axial-vector and fermion fields within the AdS 

space with an embedded black hole, the temperature dependence of the 

nucleon's axial-vector form factor, axial-vector radius, and axial-vector 

transition radius have been investigated. It has been found that as the 

temperature increases, the values of the nucleon's axial-vector form 

factor and radius decrease, approaching zero around the confinement-

deconfinement phase transition temperature. 

4.  Additionally, it has been determined that the likelihood of 

beta decay decreases with increasing temperature 
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Approval of research results. The main results of the 

dissertation work are as follows: On the School of Theoretical Physics 

and International Conference (METU, Turkey, Ankara 2020), at the 

"Modern Trends in Physics" VII International Conference (BSU, Baku, 

2021), at the Republic Scientific Conference for PhD students and 

Young Researchers (SDU, Sumqayit, 2021), in the school of 

publication of the regional doctoral program on particle physics of 

theoretical and experimental physics (Tbilisi, Georgia, 2021), at the 

"World Congress on Quantum Physics" International Conference 

(Amsterdam, 2022), at the "Holography and its Applications" I 

International Conference (Damghan University, Iran, 2022), in the 

internship program for young scientists (Dubna, Russia, 2022), at the 

International Conference and school of publication "Recent 

Achievements in Fundamental Physics" (Tbilisi, Georgia, 2022), at the 

"Holography and its Applications" II International Conference 

(Damghan University, Iran, 2022), in the publication "Frontiers in 

Hhadron Physics" (Galileo Galilei Institute, Florence, Italy, 2023), at 

the International Scientific Conference dedicated to the 100th 

anniversary of the birth of the National Leader of Azerbaijan Heydar 

Aliyev on the topic "Problems of Modern Natural and Economic 

Sciences" (Ganja State University, Ganja, 2023), at the "Modern 

Trends in Physics" VIII International Conference (BDU, Baku, 2023), 

presented at the scientific seminars of Baku State University and the 

Physics Faculty (Baku, 2020-2023). 

The organization where the dissertation work was carried out 

is the "Nuclear and High Energy Physics" laboratory of the Physics 

Institute of the Ministry of Science and Education. 

The dissertation consists of separate sections with their 

respective volumes indicated, and the total volume of the dissertation 

is also provided. The dissertation work consists of an introduction, four 

chapters, main results, and a bibliography of 110  references, along 

with 46 figures. Dissertation volume (excluding gaps in the text and 

pictures, tables, graphs, appendices and bibliography) – 204,000 

(including Introduction – 14,000, Chapter I – 62,000, Chapter II – 

64,000, Chapter III – 34,000, Chapter IV – 28,000, conclusion – 

2000) is a sign. 



8 
 

The main content of the dissertation includes the following: 

The main content of the dissertation. In the introduction, 

information is given about the relevance of the subject of the 

dissertation, its main purpose, scientific innovations, scientific and 

practical importance, defended provisions, approval of the work, and 

research methods. 

Chapter I is of an overview nature, and a broad interpretation of 

the principle of AdS/CFT duality is given without taking into account 

the temperature. Information about the 5-dimensional Anti-de-Sitter 

space, which is the first side of the AdS/CFT correspondence, the 

metric, coordinates, radius of curvature of this space, and the 4-

dimensional conformal field theory standing on the second side of this 

principle, the conformal group for which this theory is satisfied here. At 

the end of the chapter, information is given on the correlation functions 

that relate these two different dimensional theories. The question of the 

creation of the soft-wall model of the holographic QCD has been 

clarified, the soft-wall model in the case of T→0 has been broadly 

interpreted, and the equation of motion for the vector and fermion fields 

has been obtained and solved in that model. 

Chapter II provide a summary overview of the AdS/CFT 

correspondence principle considering the case with temperature. 

Information is given about the inclusion of a black hole inside the AdS 

space, and a dilaton field dependent on temperature is introduced into 

the soft wall model. The equations of motion for mesons and baryons in 

this model are solved. Special solutions for nucleon and vector mesons 

are obtained from these equations at finite temperature, and expressions 

for profile functions for mesons and nucleons are derived for both the 

ground and excited states. 

In the subsequent paragraphs, expressions for Lagrangian 

densities describing the 𝜌 and 𝜔 meson-nucleon interaction at the 

boundary of the AdS space in the temperature-included soft wall model 

of holographic QCD are written depending on temperature. Integral 

expressions are obtained based on consideration of these interaction 

Lagrangians. Temperature-dependent expressions are derived for the 

additions to the 𝜌 and 𝜔 meson-nucleon coupling constants by 

applying the holographic correspondence principle. The temperature 
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dependence of the numerical values of these constants for both ground 

and excited states is studied for various values of the model parameters 

The AdS-Schwarschild metric is as follows: 

 

𝑑𝑠2 = 𝑒2𝐴(𝑧) [𝑓𝑇(𝑧)𝑑𝑡2 − (𝑑𝑥⃗)2 −
𝑑𝑧2

𝑓𝑇(𝑧)
].      (1) 

 

he dilaton field expressed in terms of the coordinate 𝑟 is given by 

 

                              𝜑(𝑟, 𝑇) = 𝐾𝑇
2𝑟2 = (1 + 𝜌𝑇)𝑘2𝑟2.                     (2) 

 

The expression for 𝜌𝑇  is as follows: 

 

                  𝜌𝑇 = [1 −
𝑁𝑓

2−1

𝑁𝑓

𝑇2

12𝐹2
−

𝑁𝑓
2−1

2𝑁𝑓
2 (

𝑇2

12𝐹2
)

2

]                            (3) 

 

The vector meson profile function is characterized by the 

following expression at finite temperature1: 

 

𝑀0(𝑟, 𝑇) = √2𝐾𝑇
2𝑟3/2𝑒−𝜑(𝑟,𝑇) 2⁄                           (4) 

 

The nucleon profile function at finite temperature is given by 

the following expression2: 

 

   𝐹𝑛𝐽
𝐿,𝑅(𝑟, 𝑇) = √2𝐾𝑇

𝑚𝐿,𝑅+1
𝑟𝑚𝐿,𝑅+

1

2𝑒
−𝜑(𝑟,𝑇)

2 𝐿𝑛
𝑚𝐿,𝑅(𝐾𝑇

2𝑟2)           (5) 

 

To investigate the temperature dependence of the coupling 

constant between mesons and nucleons, one constructs the 

Lagrangian of the AdS/QCD model based on the gauge invariance.  

                                                           
1 Gutsche T. Mesons in a soft-wall AdS-Schwarzschild approach at low 

temperature / T. Gutsche, V. E. Lyubovitskij, I. Schmidt [et al.] // Physical 

Review D, - College Park: -  2019. - 99, - p. 054030 
2 Gutsche T. Baryons in a soft-wall AdS-Schwarzschild approach at low 

temperature / T. Gutsche, V. E. Lyubovitskij, I. Schmidt [et al.] // Physical 

Review D, - College Park: - 2019. - 99, - p. 114023. 



10 
 

By introducing a black hole within the AdS space, the 

coupling Lagrangian between vector, scalar, and spinor fields within 

the black hole-included AdS space can be expressed as a function of 

radial coordinates r and temperature T as follows: 

 

ℒ𝑞.𝑡(𝑥, 𝑟, 𝑇) =  ℒ𝜌𝑁𝑁
(0) (𝑥, 𝑟, 𝑇) + ℒ𝜌𝑁𝑁

(1) (𝑥, 𝑟, 𝑇) + ℒ𝜌𝑁𝑁
(2) (𝑥, 𝑟, 𝑇).   (6) 

 

As a result of selecting fields dependent on temperature in the 

minimal coupling Lagrangian between vector and spinor fields at 

finite temperature, the Lagrangian reduces to the following form: 

 

 ℒ𝜌𝑁𝑁
(0) (𝑥, 𝑟, 𝑇) = 𝑁̅1(𝑥, 𝑟, 𝑇)𝑒𝐴

𝑀𝛤𝐴𝑀𝑀(𝑥, 𝑟, 𝑇)𝑁1(𝑥, 𝑟, 𝑇) +

+𝑁̅2(𝑥, 𝑟, 𝑇)𝑒𝐴
𝑀𝛤𝐴𝑀𝑀(𝑥, 𝑟, 𝑇) 𝑁2(𝑥, 𝑟, 𝑇).                (7)                                          

 

Ignoring the action of temperature in the momentum space 

through the Fourier transformation, the temperature-dependent 5-

dimensional spinors 𝑁1(𝑥, 𝑟, 𝑇) and 𝑁2(𝑥, 𝑟, 𝑇) are expressed in the 

following form: 

 

𝑁1(𝑥, 𝑟, 𝑇) = 𝑁1𝐿(𝑥, 𝑟, 𝑇) +  𝑁1𝑅(𝑥, 𝑟, 𝑇) =
1

(2𝜋)4 ∫ 𝑑4𝑝′ 𝑒−𝑖𝑝𝑥[𝐹1𝐿(𝑟, 𝑇)𝑢𝐿(𝑝) + +𝐹1𝑅(𝑟, 𝑇)𝑢𝑅(𝑝)], 

𝑁2(𝑥, 𝑟, 𝑇) = 𝑁2𝐿(𝑥, 𝑟, 𝑇) +  𝑁2𝑅(𝑥, 𝑟, 𝑇) =

  
1

(2𝜋)4 ∫ 𝑑4𝑝′ 𝑒−𝑖𝑝𝑥[𝐹2𝐿(𝑟, 𝑇)𝑢𝐿(𝑝) +  +𝐹2𝑅(𝑟, 𝑇)𝑢𝑅(𝑝)].             (8) 

 

Similarly, the spinors 𝑁̅1(𝑥, 𝑟, 𝑇) and 𝑁̅2(𝑥, 𝑟, 𝑇) are expressed 

in the same manner, accounting for the action of temperature: 

 

𝑁̅1(𝑥, 𝑟, 𝑇) = 𝑁̅1𝐿(𝑥, 𝑟, 𝑇) + 𝑁̅1𝑅(𝑥, 𝑟, 𝑇) =
1

(2𝜋)4 ∫ 𝑑4𝑝′ 𝑒𝑖𝑝′𝑥[𝐹1𝐿
∗ (𝑟, 𝑇)𝑢̅𝐿(𝑝′) + + 𝐹1𝑅

∗ (𝑟, 𝑇)𝑢̅𝑅(𝑝′)], 

𝑁̅2(𝑥, 𝑟, 𝑇) = 𝑁̅2𝐿(𝑥, 𝑟, 𝑇) + 𝑁̅2𝑅(𝑥, 𝑟, 𝑇) =
1

(2𝜋)4 ∫ 𝑑4𝑝′ 𝑒𝑖𝑝′𝑥[𝐹2𝐿
∗ (𝑟, 𝑇)𝑢̅𝐿(𝑝′) +  +𝐹2𝑅

∗ (𝑟, 𝑇)𝑢̅𝑅(𝑝′)]          ( 9) 
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where 𝐹1𝐿(𝑟, 𝑇) and 𝐹1𝑅(𝑟, 𝑇) are finite temperature left and right 

profile functions for nucleons.  

The expressions (9) is considered in the context of equation 

(7). Subsequently, using the relations of Dirac matrices, certain 

calculations are performed. After all these calculations, the 

expression of the 5-dimensional 𝑆𝜌𝑁𝑁
(0)𝑛𝑚(𝑇) action at finite 

temperature is reduced to the following form:  

 

𝑆𝜌𝑁𝑁
(0)𝑛𝑚(𝑇) =

∫ 𝑑4𝑝 𝑑4𝑝′𝑢 ̅𝛾𝜇𝑢 𝑉𝜇(𝑞) ∫
𝑑𝑟

𝑟4  𝑒−𝜑(𝑟,𝑇)∞

0
𝑀0(𝑟, 𝑇) (𝐹1𝐿

(𝑛)∗(𝑟, 𝑇)𝐹1𝐿
(𝑚)(𝑟, 𝑇) +

                                  +𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝐿

(𝑚)(𝑟, 𝑇)).                             (10) 

 

According to the holographic principle of correspondence, the 

theoretical function on the boundary of the 5-dimensional AdS space 

is equal to the theoretical function inside this space. The 

correspondence of the theoretical functions between the two theories 

is expressed for the finite temperature state as follows: 

 

 𝑍𝑄𝐶𝐷(𝑇) = 𝑒𝑖𝑆𝑞.𝑡(𝑇) =  𝑍𝐴𝑑𝑆(𝑇).                     (11) 

 

To determine the nucleon current at finite temperature, the 

variation of the meson field 𝑀𝜇
𝑎(𝑞)   from equation (11) is taken 

with respect to the vacuum value on the boundary as follows: 

 

< 𝐽𝜇(𝑇) >= −𝑖
𝛿𝑍𝑄𝐶𝐷(𝑇)

𝛿𝑀𝜇
𝑎(𝑞) 

|𝑀𝜇
𝑎  =0.                    (12) 

 

Here, 𝐽𝜇 is the 5-dimensional vector current in the source, 

originating from the vector meson field 𝑀𝜇
𝑎 and representing the 

vector current for nucleons at finite temperature. It is obtained from 

equation (12) as follows: 

 

𝐽𝜇(𝑝′, 𝑝, 𝑇) = 𝑔𝜌𝑁𝑁 (𝑇)𝑢̅(𝑝′)𝛾𝜇𝑢(𝑝).                (13) 

 



12 
 

Here, 𝑝′ is the momentum of the nucleon field at finite temperature 

before the interaction, and 𝑝 is the subsequent momentum. There is 

an energy-momentum conservation law between the 4-dimensional 

𝑞 and 𝑝′ momenta, denoted as 𝑞 = 𝑝′ − 𝑝. 

 

In equation (13), the addition of the coupling constant 

𝑔𝜌𝑁𝑁
(𝑠.𝑤)𝑛𝑚(𝑇)  to the vector meson-nucleon current 𝑔𝜌𝑁𝑁

(0)𝑛𝑚(𝑟, 𝑇) is 

determined. 

 

𝑔𝜌𝑁𝑁
(0)𝑛𝑚(𝑇) = ∫

𝑑𝑟

𝑟4  𝑒−𝜑(𝑟,𝑇)∞

0
𝑀0(𝑟, 𝑇) (𝐹1𝐿

(𝑛)∗(𝑟, 𝑇)𝐹1𝐿
(𝑚)(𝑟, 𝑇) +

                       +𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝐿

(𝑚)(𝑟, 𝑇)).                              (14) 

 

Here, 𝑀0(𝑟, 𝑇) represents the vector meson field, while 𝐹1𝐿
(𝑛)(𝑟, 𝑇) 

and 𝐹1𝑅
(𝑚)(𝑟, 𝑇) denote the profile functions of nucleons at finite 

temperature. The indices 𝑛, 𝑚 indicate the initial and final excited 

states of nucleons, respectively. 

Given that nucleons possess magnetic moments, they can 

interact through these moments as well. In the 5-dimensional theory, 

such magnetic-type coupling Lagrangian terms have been 

established, and their contribution to the meson-nucleon coupling 

constant has been calculated within the framework of an additional 

hard-wall model. It is also considered that fermion fields within the 

5-dimensional space interact magnetically with the vector field. The 

coupling of nucleons within the AdS space, described by 𝛤𝐴𝐵, is 

related to the magnetic moment. The four-dimensional components 

of the 𝛤𝑀𝑁 tensor correspond to the fermions' magnetic moment. 

The Lagrangian describing this interaction remains invariant under 

Lorentz, gauge, and parity symmetries. 

In the 5-dimensional theory, at finite temperature, the 

Lagrangian ℒ𝐹𝑁𝑁
(1)

(𝑥, 𝑟, 𝑇) corresponding to this coupling is 

constructed as follows: 
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ℒ𝜌𝑁𝑁
(1)

(𝑥, 𝑟, 𝑇) =

𝑖𝑘1𝑒𝐴
𝑀𝑒𝐵

𝑁( 𝑁̅1(𝑥, 𝑟, 𝑇)𝛤𝐴𝐵(𝐹𝐿)𝑀𝑁 𝑁1(𝑥, 𝑟, 𝑇) −
𝑁̅2(𝑥, 𝑟, 𝑇)𝛤𝐴𝐵(𝐹𝑅)𝑀𝑁𝑁2(𝑥, 𝑟, 𝑇) − ℎ. 𝑐. ) =
𝑖𝑘1𝑒𝐴

𝑀𝑒𝐵
𝑁(𝑁̅1(𝑥, 𝑟, 𝑇)𝛤𝐴𝐵𝐹𝑀𝑁 𝑁1(𝑥, 𝑟, 𝑇) −

𝑁̅2(𝑥, 𝑟, 𝑇)𝛤𝐴𝐵𝐹𝑀𝑁𝑁2(𝑥, 𝑟, 𝑇) − ℎ. 𝑐. ).                                      (15) 

 

After considering equations (8) and (9) in the context of equation 

(15), the following expression is obtained for the action 𝑆𝜌𝑁𝑁
(1)𝑛𝑚(𝑇): 

 

𝑆𝜌𝑁𝑁
(1)𝑛𝑚(𝑇) = −2 ∫ 𝑑4𝑝 𝑑4𝑝′𝑢 ̅𝛾𝜇𝑢 𝑉𝜇(𝑞, 𝑇) ∫

𝑑𝑟

𝑟3
 𝑒−𝜑(𝑟,𝑇)˟

∞

0

 

˟𝑀0
ʹ (𝑟, 𝑇)[𝑘1 (𝐹1𝐿

(𝑛)∗(𝑟, 𝑇)𝐹1𝐿
(𝑚)(𝑟, 𝑇)−𝐹2𝐿

(𝑛)∗(𝑟, 𝑇)𝐹2𝐿
(𝑚)(𝑟, 𝑇)) +

+𝑘2 𝑣(𝑟, 𝑇) (𝐹1𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝐿

(𝑚)(𝑟, 𝑇) + 𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹1𝐿

(𝑚)(𝑟, 𝑇))] (16)  

                          

where i is a complex number and k1 is a parameter. 

After applying the holographic correspondence principle to equation 

(16) in equation (11), the coupling constant 𝑔𝜌𝑁𝑁
(𝑠.𝑤)𝑛𝑚(𝑇) from the 

vector meson-nucleon current (13) the following integral expression 

is obtained: 

 

𝑔𝜌𝑁𝑁
(1)𝑛𝑚(𝑇) = −2 ∫

𝑑𝑟

𝑟3
 𝑒−𝜑(𝑟,𝑇)

∞

0

𝑀0
ˊ (𝑟, 𝑇) ∗ 

∗ [𝑘1 (𝐹1𝐿
(𝑛)∗(𝑟, 𝑇)𝐹1𝐿

(𝑚)(𝑟, 𝑇) − 𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝐿

(𝑚)(𝑟, 𝑇)) + 

+𝑘2 𝑣(𝑟, 𝑇) (𝐹1𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝐿

(𝑚)(𝑟, 𝑇) + 𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹1𝐿

(𝑚)(𝑟, 𝑇))]. (17)   

           

In addition to the magnetic-type coupling between fermion and 

meson fields within the 5-dimensional AdS space at finite 

temperature, there is also a coupling with the scalar field skalyar 

 𝑋(𝑟, 𝑇). Considering the coupling of this field in the soft-wall 

model at finite temperature, the Lagrangian function is written as 

follows: 
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ℒ𝑀𝑁𝑁
(2)

(𝑥, 𝑟, 𝑇) =
𝑖

2
𝑘2𝑒𝐴

𝑀𝑒𝐵
𝑁(𝑁̅1(𝑥, 𝑟, 𝑇)𝑋(𝑟, 𝑇) 𝛤𝐴𝐵(𝐹𝑅)𝑀𝑁𝑁2(𝑥, 𝑟, 𝑇) +

𝑁̅2(𝑥, 𝑟, 𝑇)𝑋+(𝑟, 𝑇)𝛤𝐴𝐵(𝐹𝐿)𝑀𝑁𝑁1(𝑥, 𝑟, 𝑇) − ℎ. 𝑐) =
𝑖

2
𝑘2𝑒𝐴

𝑀𝑒𝐵
𝑁(𝑁̅1(𝑥, 𝑟, 𝑇)𝑋 (𝑟, 𝑇)𝛤𝐴𝐵𝐹𝑀𝑁𝑁2(𝑥, 𝑟, 𝑇) +

   +𝑁̅2(𝑥, 𝑟, 𝑇)𝑋+(𝑟, 𝑇)𝛤𝐴𝐵𝐹𝑀𝑁𝑁1(𝑥, 𝑟, 𝑇) − ℎ. 𝑐).                     (18) 

    

The "lagrangian expression" in the AdS space expresses the 

interaction between fermions' magnetic and gauge fields, as well as 

the 𝑋(𝑟, 𝑇) field. The coupling of these three fields results in 

changes in the chirality of fermions. At finite temperature, the total 

magnetic interaction is equal to the sum of the first and second 

terms: 

 

ℒ𝑀𝑁𝑁
𝑞.𝑡 (𝑥, 𝑟, 𝑇) = ℒ𝑀𝑁𝑁

(1) (𝑥, 𝑟, 𝑇) + ℒ𝑀𝑁𝑁
(2) (𝑥, 𝑟, 𝑇).                   (19) 

 

When considering the interaction integral in terms of ℒ𝑀𝑁𝑁
(2)

, the 

expression for the action 𝑆𝜌𝑁𝑁
(2)𝑛𝑚(𝑇)is obtained as follows: 

 

𝑆𝜌𝑁𝑁
(2)𝑛𝑚(𝑇)

= 4𝑚𝑁 ∫ 𝑑4𝑝 𝑑4𝑝′𝑢 ̅𝛾𝜇𝑢 𝑉𝜇(𝑞, 𝑇) ∫
𝑑𝑟

𝑟3
 𝑒−𝜑(𝑟,𝑇)

∞

0

𝑀0(𝑟, 𝑇) 

[𝑘1 (𝐹1𝐿
(𝑛)∗(𝑟, 𝑇)𝐹1𝑅

(𝑚)(𝑟, 𝑇) − −𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝑅

(𝑚)(𝑟, 𝑇)) +

+𝑘2 𝑣(𝑟, 𝑇) (𝐹1𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝑅

(𝑚)(𝑟, 𝑇) +

                        +𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹1𝑅

(𝑚)(𝑟, 𝑇))].                                       (20) 

 

The holographic correspondence principle (Equation 20) is applied 

to equation (20), yielding the expression for the current 

𝐽𝜇(𝑝′, 𝑝, 𝑇) = 𝑓𝜌
𝑛𝑚(𝑇)𝑢̅(𝑝′)𝛾𝜇𝑢(𝑝). The temperature-dependent 

expression for the coupling constant 𝑓𝜌
𝑛𝑚(𝑇) is found as follows: 
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𝑓𝜌
𝑛𝑚(𝑇) = 4𝑚𝑁 ∫

𝑑𝑟

𝑟3
 𝑒−𝜑(𝑟,𝑇)

∞

0

𝑀0(𝑟, 𝑇) ∗ 

∗ [𝑘1 (𝐹1𝐿
(𝑛)∗(𝑟, 𝑇)𝐹1𝑅

(𝑚)(𝑟, 𝑇) − 𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝑅

(𝑚)(𝑟, 𝑇)) + 

+𝑘2 𝑣(𝑟, 𝑇) (𝐹1𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝑅

(𝑚)(𝑟, 𝑇) + 𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹1𝑅

(𝑚)(𝑟, 𝑇))]. (21)            

 

The final coupling coefficient is equal to the sum of two 

couplings, 𝑔𝜌𝑁𝑁
𝑦.𝑑.

(𝑇) = 𝑔𝜌𝑁𝑁
(0)𝑛𝑚(𝑇) + 𝑔𝜌𝑁𝑁

(1)𝑛𝑚(𝑇). Afterwards, the 

meson 𝑀0(𝑟, 𝑇), nucleon 𝐹𝐿,𝑅
(𝑛,𝑚)

(𝑟, 𝑇), and scalar field 𝑣(𝑟, 𝑇) 

profile functions are considered in the expressions of coupling 

coefficients, and numerical integration is performed with respect to 

the radial coordinate r. 

After performing the integration, the expressions for the 

additions of coupling coefficients depend solely on temperature. To 

determine the temperature dependence of these expressions, the 

"Mathematica" program is applied, thereby determining how the 

numerical value of the 𝜌 meson-nucleon coupling coefficient 

changes with temperature. 

Expressions for the coupling coefficients 𝑔𝜌𝑁𝑁
(0)𝑛𝑚(𝑇), 

𝑔𝜌𝑁𝑁
(1)𝑛𝑚(𝑇), and 𝑓𝜌

𝑛𝑚(𝑇) were obtained for the purpose of calculating 

numerical integrals using the "Mathematica" program within the 

soft-wall model. Subsequently, the temperature dependence of each 

of these coupling coefficients was investigated considering different 

quark flavor numbers 𝑁𝑓 = 2, 3, 4,5  and corresponding pion decay 

constant values 𝐹 = 0.87𝐺𝑒𝑉, 0.1 𝐺𝑒𝑉, 0.13 𝐺𝑒𝑉, 0.14 𝐺𝑒𝑉. 

During these calculations, the numerical values of the free 

parameters 𝑘 , 𝑘1, 𝑘2, 𝑚𝑞 and 𝛴 in the soft-wall model were 

determined based on the numerical values of the 𝑔𝜌𝑁𝑁and 𝑔𝜋𝑁𝑁 

coupling constants in the hard-wall model, as reported in reference. 

Specifically, k=0.383 GeV, 𝑘1 = −0.78, 𝑘2 = 0.5 , 𝛴 =
(0.363)3 𝐺𝑒𝑉3 and  𝑚𝑞 = 0.000145 𝐺𝑒𝑉 These parameter values 

were fixed for the calculations in the soft-wall model. 

In order to determine the contributions of various Lagrangian 

terms to the coupling constant and their dependence on temperature, 
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the temperature dependence of these terms was investigated 

separately3. The temperature dependence of the coupling constant 

and its additions were compared in Figure 1 and Figure 2, 

considering different quark flavor parameters 𝑁𝑓 = 2, 3, 4,5 and 

corresponding pion decay constant values 𝐹 =
0.087 𝐺𝑒𝑉, 0.1 𝐺𝑒𝑉, 0.13 𝐺𝑒𝑉, 0.14 𝐺𝑒𝑉. In the following figures, 

the blue curve represents the temperature dependence of 𝑔𝜌𝑁𝑁
(0)𝑛𝑚(𝑇), 

the orange curve represents 𝑔𝜌𝑁𝑁
(1)𝑛𝑚(𝑇), the green curve represents 

𝑔𝜌𝑁𝑁
𝑦.𝑑.

(𝑇), and the red curve represents the temperature dependence 

of 𝑓𝜌
𝑛𝑚(𝑇)  additions. 

 

 

 
 

Figure 1. Temperature dependence of the 𝑔𝜌𝑁𝑁
(0)𝑛𝑚(𝑇), 𝑔𝜌𝑁𝑁

(1)𝑛𝑚(𝑇),  

𝑔𝜌𝑁𝑁
𝑠.𝑤. (𝑇)  and 𝑓𝜌

𝑛𝑚(𝑇) at 𝑁𝑓 = 2  in the  ground state of nucleons 

 

                                                           
3 Mamedov, Sh. Temperature dependence of ρ meson-nucleon coupling constant 

from the AdS/QCD soft-wall model / Sh. Mamedov, N. Nasibova //  Physical 

Review D, - College Park: - 2021. - 104, - p. 036010.   
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Figure 2.  Temperature dependence of the 𝑔𝜌𝑁𝑁
(0)𝑛𝑚(𝑇), 𝑔𝜌𝑁𝑁

(1)𝑛𝑚(𝑇),  

𝑔𝜌𝑁𝑁
𝑠.𝑤. (𝑇)  and 𝑓𝜌

𝑛𝑚(𝑇) at 𝑁𝑓 = 3  in the  ground state of nucleons 

 

 

   
 

Figure 3. Temperature dependence of the 𝑔𝜌𝑁𝑁
(0)𝑛𝑚(𝑇), 𝑔𝜌𝑁𝑁

(1)𝑛𝑚(𝑇),  

𝑔𝜌𝑁𝑁
𝑠.𝑤. (𝑇)  and 𝑓𝜌

𝑛𝑚(𝑇) at 𝑁𝑓 = 2  in the  excited state of nucleons 
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Figure 4. Temperature dependence of the 𝑔𝜌𝑁𝑁
(0)𝑛𝑚(𝑇), 𝑔𝜌𝑁𝑁

(1)𝑛𝑚(𝑇),  

𝑔𝜌𝑁𝑁
𝑠.𝑤. (𝑇)  and 𝑓𝜌

𝑛𝑚(𝑇) at 𝑁𝑓 = 3  in the  excited state of nucleons 

 

 

The blue curve in the above figures represents the 

temperature dependence of the ρ meson-nucleon coupling 

constant 𝑔𝜌𝑁𝑁
(0)𝑛𝑚

(𝑇), the orange curve represents 𝑔𝜌𝑁𝑁
(1)𝑛𝑚

(𝑇), the 

green curve represents 𝑔𝜌𝑁𝑁
𝑠.𝑤. (𝑇)  and the red curve represents 

𝑓𝜌
𝑛𝑚(𝑇). 

The equality of the quantum numbers of the ρ and ω mesons 

simplifies the study of the ω meson-nucleon coupling constant at 

finite temperature. A proportionality between the ω and ρ meson 

coupling constants is established as 𝑁𝑐𝑔𝜌(𝑇) = 𝑔𝜔(𝑇)  where 

(𝑁𝑐 = 3). 
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Figure 5. Temperature dependence of the  𝑔𝜔𝑁𝑁
(0)𝑛𝑚(𝑇), 𝑔𝜔𝑁𝑁

(1)𝑛𝑚(𝑇),  

𝑔𝜔𝑁𝑁
𝑠.𝑤. (𝑇)  and 𝑓𝜔

𝑛𝑚(𝑇) for  𝑁𝑓 = 2  in ground state of nucleons 

 

 

 Figure 6. Temperature dependence of the  𝑔𝜔𝑁𝑁
(0)𝑛𝑚(𝑇), 𝑔𝜔𝑁𝑁

(1)𝑛𝑚(𝑇),  

𝑔𝜔𝑁𝑁
𝑠.𝑤. (𝑇)  and 𝑓𝜔

𝑛𝑚(𝑇) for  𝑁𝑓 = 3 in ground state of nucleons 

 

The yellow curve represents the temperature dependence of 

the 𝑔𝜔𝑁𝑁
(0)𝑛𝑚(𝑇), coupling constant, the purple curve represents 

𝑔𝜔𝑁𝑁
(1)𝑛𝑚(𝑇),  the blue curve represents 𝑔𝜔𝑁𝑁

𝑠.𝑤. (𝑇) and the green curve 

corresponds to 𝑓𝜔
𝑛𝑚(𝑇) coupling constant addition. 
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In Chapter III, the theoretical framework for the finite 

temperature Rarita-Schwinger action within the soft-wall model in 

the AdS space has been formulated and solved. The Lagrangian 

expressions describing the vector and axial-vector meson-baryon 

interaction at finite temperature have been derived. Based on these 

expressions, the expressions characterizing the interaction between 

fields in the AdS space have been obtained. By applying the 

holographic correspondence principle, the holographic expressions 

for the 𝜌, 𝜔 meson-𝛥 baryon, 𝑎1 meson−𝛥 baryon, and 𝜌, 𝜔 meson-

nucleon-𝛥 baryon transition  coupling constants in the soft-wall 

model of holographic QCD (holographic QCD) have been obtained 

and their temperature dependence has been investigated. 

Subsequently, by varying the parameters within the model, the 

temperature dependence graphs of the minimal  coupling constants 

of these hhadrons have been drawn, and the influence of temperature 

on the  coupling constants has been studied. According to the 

AdS/CFT correspondence, the internal fields imposed on the 

determined nucleon and Δ baryon operators at the boundary of the 

AdS space differ from each other. Specifically, while Dirac fields 

correspond to nucleons with spin 1/2 within the AdS space, Rarita-

Schwinger fields Ψ_M are imposed on operators corresponding to 𝛥 

baryons with spin 3/2. It's worth noting that in theoretical physics, 

the Rarita-Schwinger equation is the relativistic field equation for 

fermions with spin 3/2. This equation was first introduced in 1941 

by William Rarita and Julian Schwinger, and it is analogous to the 

Dirac equation for fermions with spin 1/2.  

To find the ∆ baryon profile function at finite temperature in 

the soft-wall model of holographic QCD, the action dependent on 4-

dimensional influence is written in terms of 5-dimensional 

temperature as follows: 

 

𝑆(𝑇) = ∫ 𝑑5𝑥 √𝑔𝑒−𝜑(𝑟,𝑇)(𝑖𝛹̅𝐴𝛤𝐴𝐵𝐶𝐷𝐵𝛹𝐶 − 𝑚1𝛹̅𝐴𝛹𝐴 −

−𝑚2𝛹̅𝐴𝛤𝐴𝐵𝛹𝐵).                                                              (22) 
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After considering variations in the influence and performing certain 

calculations, the following equation for the motion equation is 

obtained: 

 

𝑖𝛤𝐴(𝐷𝐴𝛹𝐵(𝑥, 𝑟, 𝑇) − 𝐷𝐵𝛹𝐴(𝑥, 𝑟, 𝑇)) − 𝑚−𝛹𝐵(𝑥, 𝑟, 𝑇) +

                               +
𝑚+

3
𝛤𝐵𝛤𝐴𝛹𝐴(𝑥, 𝑟, 𝑇) = 0.                               (23) 

 

Here 𝑚∓ = 𝑚1 ∓ 𝑚2. In the 4-dimensional space, the Rarita–

Schwinger field in the AdS space preserves both cases with spin 3/2 

and 1/2 corresponding to the masses 𝑚1  and 𝑚2  respectively. 

However, since we are only interested in baryons with spin 3/2, it is 

necessary to eliminate the cases with spin 1/2. To achieve this, a 

condition is imposed in the 5-dimensional space consistent with the 

4-dimensional condition  𝛾𝜇𝛹𝜇 = 0. At finite temperature in the 

AdS space, the Lorentz condition: 

 

𝑒𝐴
𝑀𝛤𝐴𝛹𝑀(𝑥, 𝑟, 𝑇) = 0                              (24) 

 

 is imposed on the Rarita–Schwinger field. The Lorentz condition 

eliminates only one of the components with spin 1/2. Considering 

Lorentz condition in equation (24), for a free particle, we obtain the 

expression 𝜕𝑀𝛹𝑀(𝑥, 𝑟, 𝑇) = 0. The second spin 1/2 component, 

𝛹𝑟(𝑥, 𝑟, 𝑇), arises during the transition from the 5-dimensional space 

to the 4-dimensional space. The condition  

 

            𝛹𝑟(𝑥, 𝑟, 𝑇) = 0                                          (25) 

 

is chosen to remove the additional  cases. After considering the 

Lorentz condition (24) and performing certain calculations, the 

resulting action functional for the Dirac matrices, covariant 

derivative, dilaton field, and metric is expressed in the following 

form: 

(𝑖𝑟𝛤 𝐴𝜕𝐴 + 2𝑖𝛤5 − 𝑚−)𝛹𝜇 = 0,                           (26)                                 
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To describe baryons (resonances) with spin 3/2 in the soft-wall 

model of AdS/QCD at finite temperature, we introduce left-handed 

and right-handed fields 𝛹𝐴(𝐿) =
1

2
(1 − 𝛾5)𝑓𝐿 and 𝛹𝐴(𝑅) =

1

2
(1 + 𝛾5)𝑓𝑅 as components of the Rarita-Schwinger tensor field 

satisfying equation (26). Consequently, after considering the 

expressions for left and right Rarita-Schwinger fields and spinors, as 

well as Dirac matrices, from equation (27) and performing certain 

calculations, the following system of differential equations is 

obtained4: 

 

[𝜕𝑟
2 −

2(𝑚−+𝐾2(𝑇)𝑟2)

𝑟
𝜕𝑟 +

2(𝑚−−𝐾2(𝑇)𝑟2)

𝑟2
+ 𝑝2] 𝑓𝑅 = 0, 

[𝜕𝑟
2 −

2(𝑚−+𝐾2(𝑇)𝑟2)

𝑟
𝜕𝑟 + 𝑝2] 𝑓𝐿 = 0.               (27) 

                        

The functions representing the profiles are obtained by solving 

the even parity eigenvalue equation for ∆ baryons with spin 3/2 at 

finite temperature. The profile functions of ∆ baryons are given as 

follows: 

 

𝑓𝑛𝐽
𝐿 (𝑟, 𝑇) = √

2Γ(𝑛+1)

Γ(𝑛+3)
𝐾𝑇

3𝑟
5

2𝑒−
𝐾𝑇

2 𝑟2

2 𝐿𝑛
2 (𝐾𝑇

2𝑟2), 

 

         𝑓𝑛𝐽
𝑅 (𝑟, 𝑇) = √

2Γ(𝑛+1)

Γ(𝑛+2)
𝐾𝑇

2𝑟
3

2𝑒−
𝐾𝑇

2 𝑟2

2 𝐿𝑛
1 (𝐾𝑇

2𝑟2).      (28) 

                       

 

These solutions satisfy the normalization condition. 

At finite temperature, the interaction Lagrangian ℒ𝜌𝛥𝛥
(0)

(𝑥, 𝑟, 𝑇) 

expressing the interaction between the internal vector meson field 

and the Δ baryon current is written as follows. 

 

                                                           
4 Nasibova, N. Meson-delta and meson-nucleon-delta transition coupling constants 

in the soft-wall model of holographic QCD at finite temperature / Letters in 

High Energy Physics, 2022.  - 326, - p. 31526. 

https://www.researchgate.net/publication/365615689_Meson-Delta_and_meson-nucleon-Delta_transition_coupling_constants_in_the_soft-wall_model_of_holographic_QCD_at_finite_temperature?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InByb2ZpbGUifX0
https://www.researchgate.net/publication/365615689_Meson-Delta_and_meson-nucleon-Delta_transition_coupling_constants_in_the_soft-wall_model_of_holographic_QCD_at_finite_temperature?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InByb2ZpbGUifX0
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ℒ𝜌𝛥𝛥
(0)

(𝑥, 𝑟, 𝑇) = 𝛹̅1
𝜈(𝑥, 𝑟, 𝑇)𝛤𝜇𝑀𝜇(𝑥, 𝑟, 𝑇)𝛹1𝜈(𝑥, 𝑟, 𝑇) + 

+𝛹̅2
𝜈(𝑥, 𝑟, 𝑇)𝛤𝜇𝑀𝜇(𝑥, 𝑟, 𝑇)𝛹2𝜈(𝑥, 𝑟, 𝑇).             (29) 

 

At finite temperature, the  interaction Lagrangian expressing 

the interaction between the 𝛥 baryon field inside the AdS space with 

the ρ meson field, as well as the 𝑋(𝑥, 𝑟, 𝑇)scalar field, is written as 

follows: 

ℒ𝜌𝛥𝛥
(1) (𝑥, 𝑟, 𝑇) = 

= 𝑖𝑘3(𝛹̅1
𝑀𝛤𝑁𝑃(𝐹𝐿)𝑁𝑃𝛹1𝑀– 𝛹̅2

𝑀𝛤𝑁𝑃(𝐹𝑅)𝑁𝑃𝛹2𝑀) + 

+
𝑖

2
𝑘4(𝛹̅1

𝑀(𝑥, 𝑟, 𝑇)𝑋3(𝑥, 𝑟, 𝑇)𝛤𝑁𝑃(𝐹𝑅)𝑁𝑃𝛹2𝑀(𝑥, 𝑟, 𝑇) +

   +𝛹̅2
𝑀(𝑥, 𝑟, 𝑇) (𝑋+)3(𝑥, 𝑟, 𝑇)𝛤𝑁𝑃(𝐹𝐿)𝑁𝑃𝛹2𝑀(𝑥, 𝑟, 𝑇) ).     (30) 

 

ℒ𝜌𝛥𝛥
(0) (𝑥, 𝑟, 𝑇)  və  ℒ𝜌𝛥𝛥

(1) (𝑥, 𝑟, 𝑇) laqranjianlarından uyğun olaraq.  

𝑔𝜌∆∆
(0)𝑛𝑚(𝑇) üçünAccording to the corresponding Lagrangians ℒ𝜌𝛥𝛥

(0)
 

and ℒ𝜌𝛥𝛥
(1) (𝑥, 𝑟, 𝑇), the coupling constant 𝑔𝜌∆∆

(0)𝑛𝑚(𝑇) is determined as 

follows: 

 

𝑔𝜌∆∆
(0)𝑛𝑚(𝑇) =

∫
𝑑𝑟

𝑟2  𝑒−Ф(𝑟,𝑇)∞

0
𝑀0(𝑟, 𝑇) (𝑓1𝐿

(𝑛)∗(𝑟, 𝑇)𝑓1𝐿
(𝑚)(𝑟, 𝑇) +

 + 𝑓2𝐿
(𝑛)∗(𝑟, 𝑇)𝑓2𝐿

(𝑚)(𝑟, 𝑇)).                                                             (31) 

                  

The expression for the 𝑔𝜌∆∆
(1)𝑛𝑚(𝑟, 𝑇)  is obtained as folloüing 

form:  

 

𝑔𝜌∆∆
(1)𝑛𝑚(𝑇) =

−2 ∫
𝑑𝑟

𝑟
 𝑒−Ф(𝑟,𝑇)∞

0
𝑀0

ˊ (𝑟, 𝑇)[𝑘3 (𝑓1𝐿
(𝑛)∗(𝑟, 𝑇)𝑓1𝐿

(𝑚)(𝑟, 𝑇) −

−𝑓2𝐿
(𝑛)∗(𝑟, 𝑇)𝑓2𝐿

(𝑚)(𝑟, 𝑇))] +  𝑘4[(𝑣(𝑟, 𝑇))
3

(𝑓1𝐿
(𝑛)∗(𝑟, 𝑇)𝑓2𝐿

(𝑚)(𝑟, 𝑇) +

                                  +𝑓2𝐿
(𝑛)∗(𝑟, 𝑇)𝑓1𝐿

(𝑚)(𝑟, 𝑇))].                               (32)                                                     
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The explicit expression for the  interaction Lagrangian 

ℒ𝜌𝑁∆
(0)

(𝑥, 𝑟, 𝑇)  is as follows: 

 

ℒ𝜌𝑁∆
(0)

= 𝛼1(𝛹̅1
𝑀𝛤𝑁(𝐹𝐿)𝑀𝑁𝑁1 − 𝛹̅2

𝑀𝛤𝑁(𝐹𝑅)𝑀𝑁𝑁2).      (33) 

 

In a similar manner, the temperature-dependent expression for the  

coupling constant 𝑔𝜌𝑁∆
(0)

(𝑇)is found as follows: 

 

𝑔𝜌𝑁∆
𝑛𝑚 (𝑇) =

∫ 𝑑𝑟 𝑒−𝜑(𝑟,𝑇) [ 
∞

0

1

𝑟2 𝑀0
ˊ (𝑟, 𝑇) (𝑘1(𝐹1𝐿

(𝑛)∗(𝑟, 𝑇)𝑓1𝑅
(𝑚)(𝑟, 𝑇) −

                             − 𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝑓2𝑅

(𝑚)(𝑟, 𝑇)).                                    (34) 

 

Based on the  interaction Lagrangian 𝐿(0)(𝑥, 𝑧)  for the 

interaction between the axial-vector field and the 𝛹𝑀 Rarita-

Schwinger field, the temperature-dependent Lagrangian 

𝐿(0)(𝑥, 𝑟, 𝑇) is expressed as follows: 

 

ℒ𝑎1ΔΔ
(0) (𝑥, 𝑟, 𝑇) =

1

2
(𝛹̅1

𝑀(𝑥, 𝑟, 𝑇)𝑒𝐴
𝑀𝛤𝑀𝐴𝑀(𝑟, 𝑇)𝛹1𝑀(𝑥, 𝑟, 𝑇) −

−𝛹̅̅ ̅̅̅
2
𝑀(𝑥, 𝑟, 𝑇)𝑒𝐴

𝑀𝛤𝑀𝐴𝑀(𝑟, 𝑇)𝛹2𝑀(𝑥, 𝑟, 𝑇)).        (35) 

 

The Lagrangian describing the interaction between the a1 

meson and the Δ baryons in the magnetic type ℒ𝑎1ΔΔ
(1)

(𝑥, 𝑟, 𝑇)  is 

written as follows: 

 

ℒ𝑎1ΔΔ
(1) (𝑥, 𝑟, 𝑇) =

𝑖

2
𝑘1𝑒𝐴

𝑀𝑒𝐵
𝑁(𝛹̅1

𝑀(𝑥, 𝑟, 𝑇)𝛤𝑀𝑁𝐹𝑀𝑁𝛹1𝑀(𝑥, 𝑟, 𝑇) +

+ 𝛹̅̅̅2
𝑀(𝑥, 𝑟, 𝑇)𝛤𝑀𝑁𝐹𝑀𝑁𝛹2𝑀(𝑥, 𝑟, 𝑇)).                                  (36) 

 

From the expressions of the respective Lagrangians, the 

coupling constant 𝑔 𝑎1ΔΔ
(0)

(𝑇)  and 𝑔 𝑎1ΔΔ
(1)

(𝑇) are determined as 

follows: 
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𝑔 𝑎1ΔΔ
(0) (𝑇) =

1

2
∫  𝑒−𝜑(𝑟,𝑇) 𝑑𝑟

𝑟2 𝐴𝑛(𝑟, 𝑇)
∞

0
[|𝑓1𝑅(𝑟, 𝑇)|2 −   |𝑓1𝐿(𝑟, 𝑇)|2]. 

(37)                                                         

                                                

 

𝑔 𝑎1ΔΔ
(1)

(𝑇) =
𝑘1

2
∫  𝑒−𝜑(𝑟,𝑇) 𝑑𝑟

𝑟3
(𝜕𝑟𝐴𝑛(𝑟, 𝑇))

∞

0

[|𝑓1𝑅(𝑟, 𝑇)|2 + 

+|𝑓1𝐿(𝑟, 𝑇)|2].                                          (38) 

 

After finding the integral expressions of 𝑔𝜌∆∆
(0)𝑛𝑚(𝑇), meson-

nucleon-Δ-baryon 𝑔𝜌𝑁∆
(0)𝑛𝑚(𝑇),  and ω meson-Δ baryon 𝑔𝜔∆∆

(0)𝑛𝑚(𝑇)ω 

meson-nucleon-Δ-baryon 𝑔𝜔𝑁∆
(0)𝑛𝑚(𝑇) couplings, the temperature 

dependencies of the coupling constants have been plotted. 

In the figures, the corresponding sky-colored curve 

corresponds to 𝐹 = 0.087 𝐺𝑒𝑉, the yellow curve to 𝐹 = 0.1 𝐺𝑒𝑉 

the green curve to 𝐹 = 0.13 𝐺𝑒𝑉  and the purple curve to 𝐹 =
0.14 𝐺𝑒𝑉. The results are taken for the Δ baryon in the ground state. 

 

 

  
 

 

Figure 7. Temperature dependence of the coupling constant 

𝑔𝜌𝛥𝛥
0 (𝑇)  at different values of the quark flavour number 𝑁𝑓 
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Figure 8. Temperature dependence of the coupling constant 

𝑔𝜌𝑁𝛥
0 (𝑇)at different values of the quark flavour number 𝑁𝑓 

 

 

 

 
Figure 9. Temperature dependence of the coupling constant 

𝑔𝜔𝛥𝛥
0 (𝑇) at different values of the quark flavour number 𝑁𝑓 
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Figure 10. Temperature dependence of the coupling constant 

𝑔𝜔𝑁𝛥
0 (𝑇) at different values of the quark flavour number 𝑁𝑓 

 

 

 

 
Figure 11. Temperature dependence of the coupling constant 

𝑔𝑎1𝛥𝛥
(0)𝑛𝑚(𝑇) at different values of the quark flavour number 𝑁𝑓 
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Figure 12. Temperature dependence of the coupling constant 

𝑔𝑎1𝛥𝛥
(1)𝑛𝑚(𝑟, 𝑇)  at different values of the quark flavour number 𝑁𝑓 

 

In Chapter IV, the expression for the axial-vector propagator 

of nucleons at finite temperature is derived, based on the Lagrangian 

constraints describing the  interaction between the axial-vector field 

and the nucleon field. Using the expressions obtained for the AdS 

space fields, the temperature-dependent expressions for the axial-

vector and axial-vector transition form factors of nucleons, as well 

as the radius, have been investigated for various values of model 

parameters. 

At finite temperature, the axial-vector field 𝐴𝑁(𝑥, 𝑟, 𝑇)  

coincides with the scalar field 𝑉𝑁(𝑥, 𝑟, 𝑇). The expression for the 

axial-vector field at finite temperature is written as follows, 

according to the interaction written for the vector field at finite 

temperature: 

 

𝑆 =
(−)𝐽

2
∫ 𝑑4 𝑥𝑑𝑟𝑒−𝜑𝑇(𝑟)𝜕𝑀𝐴𝑁(𝑥, 𝑟, 𝑇)𝜕𝑀𝐴𝑁(𝑥, 𝑟, 𝑇).     (39) 

   

The Fourier transform of the axial-vector field 𝐴𝑁(𝑥, 𝑟, 𝑇) 

from internal to momentum space, denoted by 𝐴(−𝑞2, 𝑟, 𝑇)   is 

expressed as follows: 
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𝐴𝑁(𝑥, 𝑟, 𝑇) = ∫
𝑑4𝑞

(2𝜋)4 𝑒−𝑖𝑞𝑥 𝐴𝑁(𝑞)𝐴𝑁(−𝑞2, 𝑟, 𝑇).                (40)     

                   

Then, by replacing −𝑞2 = 𝑄2 with 𝑄2 we transition to the 

domain of 𝑄2. By taking the variation with respect to 𝐴𝑁(𝑞) from 

the interaction expression, the following expression for the kinetic 

term is obtained5: 

 

𝜕𝑟 (−
𝑒−𝜑𝑇(𝑟)

𝑑𝑟
𝜕𝑟𝐴(𝑄, 𝑟, 𝑇)) − 𝑄2 𝑒−𝜑𝑇(𝑟)

𝑑𝑟
𝐴(𝑄, 𝑟, 𝑇) = 0.    (41)          

 

When the effect of temperature is not considered, equation 

(41) differs from the action for the vector field by replacing z with r 

and k with 𝐾(𝑇). At finite temperature, the obtained action for the 

vector field coincides with it. Equation (41) is known as the internal-

to-boundary propagator for the axial-vector field, and it is expressed 

as follows: 

 

𝐴(𝑄, 𝑟, 𝑇) = (Γ(1 + 𝑎𝑇))𝑈(𝑎𝑇 , 0, 𝐾2(𝑇)𝑟2)* 

            ∗ ∫
dx

(1−𝑥)2 𝑥𝑎𝑇
1

0
𝑒−𝐾2(𝑇)𝑟2 x

1−𝑥                                   (42) 

 

Here 𝑎𝑇 =
𝑄2

4𝐾2(𝑇)
 . Γ(1 + 𝑎𝑇) is the gamma function, and, U(x, y, z) 

is the Tricomi function.  

The interaction Lagrangian terms that contribute to the axial-vector 

form factor at finite temperature are expressed in the following 

form: 

 

𝐿(0)(𝑥, 𝑟, 𝑇) =
1

2
(𝛹̅1(𝑥, 𝑟, 𝑇)𝛤𝑀𝐴𝑀(𝑥, 𝑟, 𝑇)𝛹1(𝑥, 𝑟, 𝑇) −

𝛹̅2(𝑥, 𝑟, 𝑇)𝛤𝑀𝐴𝑀(𝑥, 𝑟, 𝑇)𝛹2(𝑥, 𝑟, 𝑇)).                                        (43) 

                          

                                                           
5 Mamedov, Sh. Axial-vector form factor of nucleons at finite temperature from 

the AdS/QCD soft-wall model / Sh. Mamedov, N. Nasibova // International 

Journal Modern Physics A, - Singapore: - 2023. - 38, №24,  - p. 2350131. 

https://www.worldscientific.com/doi/full/10.1142/S0217751X23501312
https://www.worldscientific.com/doi/full/10.1142/S0217751X23501312
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The interaction Lagrangian term contributing to the axial-

vector form factor at finite temperature can be expressed in the form 

of a magnetic-type interaction as follows: 

 

𝐿(1)(𝑥, 𝑟, 𝑇) =                   
𝑖

2
𝑘1{𝛹̅1(𝑥, 𝑟, 𝑇)𝛤𝑀𝑁𝐹𝑀𝑁𝛹1(𝑥, 𝑟, 𝑇) +

                          + 𝛹̅2(𝑥, 𝑟, 𝑇)𝛤𝑀𝑁𝐹𝑀𝑁𝛹2(𝑥, 𝑟, 𝑇)}.                        (44) 

 

The interaction Lagrangian term between the spinor, scalar, 

and axial-vector fields is written as follows: 

 

𝐿(2)(𝑥, 𝑟, 𝑇) = 
𝑔𝑌

2
{𝛹̅1(𝑥, 𝑟, 𝑇)𝛤𝑀𝐴𝑀𝛹1(𝑥, 𝑟, 𝑇) +

             +𝛹̅2(𝑥, 𝑟, 𝑇)𝑋∗(𝑥, 𝑟, 𝑇)𝛤𝑀𝐴𝑀(𝑥, 𝑟, 𝑇)𝛹1(𝑥, 𝑟, 𝑇)}.          (45) 

    

The interaction Lagrangian term is generally expressed as 

follows: 

 

𝐿(𝑥, 𝑟, 𝑇) = 𝐿(0)(𝑥, 𝑟, 𝑇) + 𝐿(1)(𝑥, 𝑟, 𝑇) + 𝐿(2)(𝑥, 𝑟, 𝑇)   (46) 

 

The Lagrangian constraints expressed by equations (46) are 

written in terms of the corresponding effective actions, taking into 

account the relation between the profile functions, where  

𝐹1𝐿
(𝑛)(𝑟, 𝑇) = −𝐹2𝑅

(𝑚)(𝑟, 𝑇) and 𝐹1𝑅
(𝑛)(𝑟, 𝑇) = 𝐹2𝐿

(𝑚)(𝑟, 𝑇)6. 

Applying the holographic correspondence principle to the final 

expression, the following expressions for axial-vector form factor at 

finite temperature are obtained: 

 

𝐺𝐴
(0)(𝑄2, 𝑇) =

1

2
∫  𝑒−𝜑(𝑟,𝑇)𝑑𝑟𝐴(𝑄, 𝑟, 𝑇)

∞

0
[|𝐹1𝑅(𝑟, 𝑇)|2 −

−|𝐹1𝐿(𝑟, 𝑇)|2],                                   (47)       

              

                                                           
6 Gutsche T. Electromagnetic properties of the nucleon and the Roper resonance in 

soft-wall AdS/QCD at finite temperature / T. Gutsche, V. E. Lyubovitskij, I. 

Schmidt // Nuclear Physics B, - London: - 2020. - 952,  - p. 114934. 
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𝐺𝐴
(1)(𝑄2, 𝑇) =

𝑘1

2
∫  𝑒−𝜑(𝑟,𝑇)𝑑𝑟 𝑟 (𝜕𝑟𝐴(𝑄, 𝑟, 𝑇))

∞

0
[|𝐹1𝑅(𝑟, 𝑇)|2 + |𝐹1𝐿(𝑟, 𝑇)|2],(48)       

     

𝐺𝐴
(2)(𝑄2, 𝑇) =

2𝑔𝑌 ∫  𝑒−𝜑(𝑟,𝑇)𝑑𝑟𝐴(𝑄, 𝑟, 𝑇)
∞

0
2𝑣(𝑟, 𝑇)𝐹1𝐿(𝑟, 𝑇)𝐹1𝑅(𝑟, 𝑇).  (49) 

  

The axial-vector form factor 𝐺𝐴 (𝑄2, 𝑇)is equal to the sum of 

these three terms. 

The square of the average value of the axial-vector radius 

𝑟𝐴
2(𝑇)  for nucleons at finite temperature is obtained from the 

variation of the normalized axial-vector form factor with respect to 

𝑄2 as shown below: 

 

〈𝑟𝐴
2(𝑇)〉 = −

−6𝑑𝐺𝐴(𝑄2,𝑇)

𝐺𝐴(𝑄2,0)d𝑄2 .                             (50) 

 

To obtain the expression for the axial-vector transition form 

factor for nucleons at finite temperature, we consider nucleons 

excited in the state 𝛹̅1,2  and ground state 𝛹2,1. The excited state of 

nucleons is represented by a profile function containing the quantum 

number 𝑛 = 1 and mass |𝑝|ˊ = 𝑚∗. For the ground state nucleons, 

the profile function 𝐹1,2𝐿
(𝑛)

 is chosen with 𝑛 = 0 and mass |𝑝| = 𝑚. 

The axial-vector transition form factor 𝐺𝐴𝑇
(𝑖)

 (𝑄, 𝑇)  is 

expressed as the sum of contributions from the temperature-

dependent modifications to the form factor. For the addition to the 

nucleon's axial form factor 𝐺𝐴𝑇
(0)(𝑄2, 𝑇), the following expression 

dependent on temperature is obtained7: 

 

                                                           
7 Nasibova, N. Form factor of excited baryon at finite temperature / - Baku: 

Journal of Radiation Researches, - 2021.  - 8, №1, - p. 36-41. 

 

https://scholar.google.com/citations?view_op=view_citation&hl=tr&user=RCdbbIQAAAAJ&citation_for_view=RCdbbIQAAAAJ:d1gkVwhDpl0C
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𝐺𝐴𝑇
(0)(𝑄2, 𝑇) =

1

2
∫  𝑒−𝜑(𝑟,𝑇)𝑑𝑟𝐴(𝑄, 𝑟, 𝑇)

∞

0
[𝐹1𝐿

(𝑛)∗
(𝑟, 𝑇)𝐹1𝐿

(𝑚)
(𝑟, 𝑇) −

−𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝐿

(𝑚)
(𝑟, 𝑇)].           (51)       

 

For the addition to the nucleon's transition axial form factor 

𝐺𝐴𝑇
(1)(𝑄2, 𝑇) due to the magnetic-type interaction Lagrangian, and for 

the addition to the nucleon's transition axial form factor 

𝐺𝐴𝑇
(2)(𝑄2, 𝑇)due to the Yukawa interaction Lagrangian, the following 

expressions are obtained: 

 

 𝐺𝐴𝑇
(0)(𝑄2, 𝑇) =

𝑘1

2
∫  𝑒−𝜑(𝑟,𝑇)𝑑𝑟 𝑟 (𝜕𝑟𝐴(𝑄, 𝑟, 𝑇))

∞

0
[𝐹1𝐿

(𝑛)∗(𝑟, 𝑇)𝐹1𝐿
(𝑚)

(𝑟, 𝑇) +

𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝐿

(𝑚)
(𝑟, 𝑇)]      

    (52)     

 𝐺𝐴𝑇
(1)(𝑄2, 𝑇) =

2𝑔𝑌 ∫  𝑒−𝜑(𝑟,𝑇)𝑑𝑟𝐴(𝑄, 𝑟, 𝑇)
∞

0
2𝑣(𝑟, 𝑇)[𝐹1𝐿

(𝑛)∗(𝑟, 𝑇)𝐹1𝐿
(𝑚)

(𝑟, 𝑇) −

                             − 𝐹2𝐿
(𝑛)∗(𝑟, 𝑇)𝐹2𝑅

(𝑚)
(𝑟, 𝑇)]                                      (53)   

 

The total expression for the axial-vector form factor for 

nucleons, denoted as 𝐺𝐴𝑇(𝑄2, 𝑇)  is determined as the sum of these 

three terms. 

 

     𝐺𝐴𝑇(𝑄2, 𝑇) = 𝐺𝐴𝑇
(0)(𝑄2, 𝑇) + 𝐺𝐴𝑇

(1)(𝑄2, 𝑇) + 𝐺𝐴𝑇
(2)(𝑄2, 𝑇).       (54)   

  

The temperature-dependent expression for the axial-vector 

transition radius at finite temperature is obtained from the 

corresponding form factor as follows: 

 

       〈𝑟𝐴𝑇
2 (𝑇)〉 = −

−6𝑑𝐺𝐴𝑇(𝑄2,𝑇)

𝐺𝐴𝑇(𝑄2,0)d𝑄2                                                 (55) 
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Figure 13. The temperature dependence of the effective mass of 

nucleon 

 

 
 

Figure 14. Dependence of the normalized axial vector form factor of 

nucleons in the ground state at α =  0.1 on temperature and the 

square of the transmitted momentum 
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Figure 15. Dependence of the normalized axial vector form factor of 

nucleons in the ground state at α = 0.2 on the temperature and the 

square of the transmitted momentum 

 

 
 

Figure 16. Dependence of normalized axial vector form factor of 

excited nucleons at α =  0.1   on temperature and square of 

transmitted momentum 
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Figure 17. Dependence of the normalized axial vector form factor of 

excited nucleons at α =  0.2 on temperature and the square of the 

transmitted momentum 

 

 

    
 

 

Figure 18. Temperature dependence of the normalized axial vector 

form factor of nucleons in the ground state at different values of α 
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Figure 19. Temperature dependence of the normalized axial vector 

form factor of excited nucleons at different values of α 

 

 

 

 
 

Figure 20. Dependence of the normalized axial vector form factor of 

nucleons in the ground state at different temperatures on the square 

of the transmitted momentum 
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Figure 21. Dependence of the normalized axial vector form factor of 

the nucleon in the ground state at different values of temperature on 

the square of the transmitted momentum 

 

 

 
 

Figure 22. Dependence of axial vector radius of nucleons on 

temperature 
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Figure 23. Dependence of axial vector transition radius of nucleons 

on temperature 

 

 

 
 

Figure 24. Dependence of the axial vector transition form factor on 

the temperature and the square of the transmitted pulse at  α = 0.1   
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Figure 25. Dependence of the axial vector transition form factor on 

the temperature and the square of the transmitted momentum at α = 

0.2   

 

 

 
 

Figure 26. Dependence of the axial vector transition form factor on 

the square of the transmitted momentum at different values of 

temperature 
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Figure 27. Dependence of axial vector transition form factor on 

temperature at different values of α  

 

The Main Results of the Dissertation 

 

1. For the first time, the temperature-dependent expressions of 

the ρ-meson-nucleon coupling constant in the holographic Soft Wall 

Model have been calculated theoretically, and it has been found that 

this constant decreases with increasing temperature, reaching zero near 

the critical temperature. 

2. The isospin symmetry of the ω and ρ mesons is not broken at 

finite temperature. 

3. The Rarita-Schwinger equation has been investigated for the 

first time at finite temperature in the Soft Wall Model. It has been 

obtained that the coupling constants of ρ, ω, a_1 meson-Δ baryon and 

ρ, ω meson-nucleon-Δ baryon decrease with increasing temperature. 

4. As the temperature increases, the axial-vector form factor 

decreases. This implies a decrease in the probability of β decay with 

increasing temperature, which can be tested in neutrino experiments. 

5. The result obtained for the axial-vector radius of nucleons at 

T→0 is close to experimental values and results from other models. 

6. Although there is interaction between hhadrons below the 

temperature of confinement-deconfinement phase transition, above this 
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temperature, there is no interaction, and the fragmentation of all 

hhadrons and the replacement of the hhadron medium with a quark-

gluon plasma medium can explain this phenomenon. 

7. The result obtained for the 𝑎1 meson-nucleon coupling 

constant in the Soft Wall Model at finite temperature is found to be 

close to values obtained from other models and experiments. 
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