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INTRODUCTION 

Relevance of the topic and degree of development 

Since the middle of the last century, directions have emerged 

and are now widely developing, establishing a close connection 

between the mechanics of materials and structure with other areas of 

physics, thanks to which the physical questions of the deformability of 

continuous media and the strength of solids have received important 

development. The first works on the mechanical theory of creep and 

the problem of buckling and loss and stability of thin-walled structural 

elements belong to N.M. Belyaev (1943), N. Hoff (1951), Yu. N. 

Rabotnov (1957,1966), L. M. Kachanov (1960), N.N.Malinin (1959 ), 

S.A. Shesterikov(1957,1963), A.S. Volmir (1962), I.G. Teregulov 

(1962,1966), V.I. Rozemblyum (1954), A.M. Lokoshenko (2008), 

L.M. Kurshin ( 1961, 1963), G.V. Ivanov (1961,1963) and their 

followers. In our republic, since 1970, problems of creep of metals and 

hereditarily elastic media, as well as issues of buckling and 

determination of the load-bearing capacity of structural elements and 

solids bodies, devoted to the study of M.F. Mehdiev, R.Yu. 

Amenzadeh, S.D. Akbarov, M.Kh. Ilyasov, A.N. Alizade, L.H. 

Talybly, F.S. Latifov, A.D. Zamanov, G.G. Aliev, M.B. Akhundov, L.F. 

Fatullaeva and others. 

Spatial dynamic problems of a solid deformable body, 

hydrodynamics, elastodynamics and hydroelasticity in general, this is 

one of the most complex classes of problems in continuum mechanics. 

However, the mathematical difficulties of solving boundary value 

problems in a three-dimensional formulation often led to the need to 

involve various hypotheses and simplifying assumptions. This 

significantly simplifies the formulation and solution of problems, but 

always imposes significant restrictions on the scope of applicability of 

the solutions obtained.  

These remarkable achievements in the field of solving mathematical 

problems related to fundamental issues of continuum mechanics and 

engineering are still relevant today, and many of these results have 

been applied to the solution of seismic problems. Studies of natural 

vibrations of a multilayer hollow sphere and a multilayer hollow 

cylinder within the framework of the three-dimensional linearized 
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theory of deformable bodies with initial inhomogeneous stresses and 

the theory of elastic waves were carried out by S.D. Akbarov and A.N. 

Guz. 

For fundamental research, the relevance of solving spatial 

problems is determined by the fact that the stress-strain state is almost 

always three-dimensional in nature. The relevance of this kind of 

large-scale research for engineering applications is determined by the 

fact that in problems of the strength of materials and the load-bearing 

capacity of structural elements, data are mainly used on experimental 

values of the stress-strain state (SSS) in local areas (in zones of sharp 

changes in the geometric shape of structural elements, in places 

applications of uneven load, etc.). Obtaining this kind of reliable and 

complete information is associated with the use of methods and 

specific results of spatial tasks. 

Object and subject of research.  

Objects that are considered in this dissertation and for which 

the very formulation of the problem of determining the bearing 

capacity has practical meaning, there will be structural elements - rods, 

plates and shells. When presenting general issues of stability under 

creep with the construction of variational principles, as well as for 

studying problems of dynamics, the main objects are solid deformable 

elastic and inelastic bodies with finite and infinite geometric 

dimensions. Equations for more specific objects, as is known, can 

always be obtained from the general equations of the theory of 

elasticity, plasticity, and creep, introducing the corresponding 

kinematic and static hypotheses and applying variational principles. 

Deformable solids, in the form of hollow multilayer spheres and 

hollow multilayer cylinders and structural elements - multilayer rods 

and multilayer shells (ring) form a piecewise homogeneous elastic and 

inelastic medium, composed of a finite number of homogeneous parts 

different in shape and physical properties, connected into one solid 

body in one way or another. The connection of dissimilar parts can be 

either natural or artificial. The latter always serve the purpose of 

strengthening the load-bearing capacity of structures and are often 

used in engineering practice. 
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In the case of connecting a solid body from dissimilar parts 

with other elastic characteristics, such as composites and 

nanostructures, solving the problem becomes much more difficult. 

   In the first, second and third chapters of the dissertation, it is 

additionally assumed that the contacting surfaces of the bodies do not 

lag each other due to deformation, i.e., during deformation, the 

elements contact each other along their entire common surface. 

The work examines some static and dynamic problems in the 

mechanics of structures and deformable solids, determines their stress-

strain state and evaluates their load-bearing capacities. 

The subject of the dissertation research is: 1. Static problem - 

constructing a variational principle for solid anisotropic bodies and 

structural elements during creep, considering the influence of external 

physio-chemical fields, mechanical influences, and damageability of 

the material. 2. Dynamic problem - determination of the main wave 

dynamic characteristics for hollow multilayer spherical and cylindrical 

bodies containing compressible liquids inside during free vibrations, 

considering various boundary and contact conditions. 

Goal of the work 

The purpose of the dissertation work is to create mathematical 

models of certain classes of static and dynamic problems in the 

mechanics of a deformable solid and structural elements, determine 

their load-bearing capacity considering the influence of surrounding 

external fields and obtain accurate and approximate analytical 

solutions in a three-dimensional formulation. 

Research methods 

Extended variational principles were implemented in the works of 

A.J.Wang, W.Prager [1]1, J.L. Sanders, G.D. Mac Comb, F.R. Shlechte 

[2]2, K.Washizu [3]3 and others, where variational principles were 

formed for the boundary value problem, where it is assumed that 

 
1 Wang A.J. Termal and creep effects in work-hardening elastic-plastic solids / W. Prager // 

Journal of the Aeronautical Sciences, –1954. V.21. №5, –p.343-344. 
2 Sanders J. L. A variational theorem for Creep with applications to plates and columns / H. 

G. McComb, F.R. Schlechte // NASA Report, –1957. –p.134. 
3 Washizy K. Variational principles in continuum mechanics // University of Washington 

College of Engeneering.Department of Aeronauticai Engineering, –1962.Report 62-2 
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stresses and displacements are known now of time. Knowing the rate 

of change of surface forces, the rate of change of displacements on the 

surface, the rate of change of mass forces and the relationship between 

the rates of stress and strain, we find the rate of stress and displacement 

occurring in the body. In this case, the creep strain rate can be 

considered as the initial strain rate. As is known, in quasi-static 

processes, given mass forces, surface forces and displacements change 

so slowly over time that the inertial terms in the equations of motion 

are neglected. Thus, in a quasi-static problem, considering the 

distributions of stresses and displacements in the body at the initial 

moment of time as given, we will determine the time derivatives of 

stresses and displacements; here time will play the role of a parameter. 

Within the framework of the three-dimensional linearized 

theory of deformable bodies with inhomogeneous initial stresses and 

the theory of elastic waves, S.D. Akbarov et al. developed a discrete-

analytical method, which is used to study the natural vibrations of a 

solid hollow sphere and a cylinder.  

Natural vibrations of a solid hollow sphere and a multilayer 

hollow sphere and a multilayer hollow cylinder containing 

compressible inviscid fluids, within the framework of three-

dimensional linearized theory of deformable bodies with initial 

inhomogeneous stresses, hydrodynamics, as well as the theory of ideal 

elastic waves and within the framework of exact equations of the 

theory of elasticity with discontinuous kinematics contact conditions 

were studied by the Fourier method. 

Main provisions submitted for defence: 

- a constructed mixed variational principle for creep problems, 

taking into account the influence of external physic-chemical fields on 

the bearing capacities of solids and structural elements in a geometric 

linear and nonlinear formulation. 

  -modified mixed variational principle for composite 

materials, considering the damageability of materials. 

- an analytical solution obtained by a discrete analytical 

method for problems of the dynamics of a sphere with non-uniform 

initial stresses in a three-dimensional formulation. 
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  - analytical solution to the problem of the propagation of 

elastic waves in a non-uniformly prestressed hollow multilayer sphere 

and a hollow multilayer cylinder filled with a compressible fluid of 

free vibrations. 

-solutions to the problem of establishing the influence of initial 

non-uniform stresses on the dynamic characteristics of a multilayer 

hollow sphere and a hollow cylinder filled with a compressible ideal 

fluid. 

-solution for determining the dynamic characteristics of a 

layered hollow sphere in the presence of non-ideal contact conditions. 

-solution of an axisymmetric problem of the propagation of 

elastic waves in a hydroelastic system - a cylindrical shell and a 

viscous compressible fluid with spherical gas bubbles. 

Scientific novelty of the research 

The scientific novelty of the work is as follows: 

          - a mixed variational principle was formulated and 

proven to determine the bearing capacity of elastoplastic deformable 

anisotropic solids and structural elements made of structural metals 

based on the kinetic theory of Yu.N. Rabotnov, who are under the 

influence of physical and chemical external environments. 

         For dynamic problems of natural vibrations of an 

isotropic elastic sphere with inhomogeneous initial stresses within the 

framework of a piecewise homogeneous body, using three-

dimensional linearized equations and relations of elastodynamics, a 

discrete analytical method is proposed, and analytical solutions are 

obtained. 

          The solution to the corresponding equations of motion 

of a three-layer hollow sphere containing a stationary compressible 

inviscid fluid and a multilayer hollow cylinder, inside of which a 

compressible inviscid fluid flows at a constant longitudinal velocity, 

having initial non-uniform electrostatic stresses arising under the 

action of radial compression forces uniformly distributed on the outer 

and inner surfaces, are presented through Helmholtz potentials. 

   Analytical solutions to the problem of studying the influence 

of inhomogeneous initial stresses on dynamic stresses have been 

obtained. 
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reactions of a hollow three-layer sphere with non-ideal 

contacts between layers, using exact three-dimensional equations and 

relations of elastodynamics. 

Theoretical and practical significance of the study 

The theoretical value of the dissertation includes: 

   -variation principle for determining the load-bearing 

capacity of a three-dimensional body and structural element during 

creep, taking into account the influence of external physical and 

chemical fields and damage; 

  -analytical solutions obtained by the discrete analytical 

method for problems of the dynamics of a sphere with inhomogeneous 

initial stresses based on the linearization of the three-dimensional 

theory of stability of elastic bodies; 

  -analytical solutions to problems on the propagation of elastic 

waves in a multilayer hollow sphere and a hollow cylinder filled with 

liquid with non-uniform initial stresses, obtained in a three-

dimensional formulation; 

- determination of the dynamic characteristics of a layered 

hollow sphere in the presence of non-ideal contact conditions; 

-study of the problem of the propagation of elastic waves in a 

hydroelastic system - a cylindrical shell and a viscous compressible 

fluid with spherical gas bubbles. 

          The results of the analysis of the causes of man-made 

disasters and accidents of critical structures and structures show that 

destruction and disasters could have been avoided if the necessary 

means of non-destructive testing and diagnostics of the condition of 

materials and the structure were available. In applied research and 

practical work, methods are needed for mathematical modelling of the 

processes of loss of bearing capacity of a material and establishing the 

expected residual life of structures, which is the practical significance 

of the results obtained in the work. 

Reliability of research results 

The reliability of the results obtained is ensured by the 

mathematical correctness of the problems posed, obtaining solutions 

to the problems using rigorous analytical methods, the results of 

numerical calculations, and a comparison of the final analytical and 
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numerical results in particular cases with those known in the literature. 

In the calculations, MATHLAB is used and uses a modern licensed 

package for mathematical calculations and the corresponding graphs 

are built. The results obtained are confirmed cases with their 

coincidences with the known results of other authors. 

   Approbation of work 

The main results of the dissertation work were reported and 

discussed at the following conferences: 

- Республиканская конференция «Актуальные проблемы 

теоретической и прикладной математики» посвящённое 100 

летию академика М. Расулова, Шеки, 2016; 

- Международная научно-техническая конференция  

«Актуальные проблемы прикладной математики, информатики и 

механики», Воронеж, 2017; 

- Республиканская конференция «Актуальные проблемы 

математики и механики посвящённое 100 летию чл. корр. НАНА, 

профессора Г. Т. Ахмедова, Баку, 2017; 

- XVII International Conference «Dynamical System Modelling and 

Stability Investigation», Ukraine, Kiev, 2017; 

-   International Conference Geoinformatics, Ukraine, Kiev, 2018; 

-  International Conference «Modern problem mechanics and 

mathematics» dedicated to the 90th anniversary of academician A. Kh. 

Mirzajanzade, Baku, 2018; 

-  Республиканская научная конференция «Актуальные проблемы 

математики и механики» посвящённое 95 летному юбилею 

Общенационального Лидера Азербайджана Г. А. Алиева, 2018; 

8th Internasional Conference on «Appleid Analysis and Mathematical 

Modeling», Istanbul Gelisim University, 2019; 

- Республиканская научная конференция «Актуальные проблемы 

математики и механики» посвящённое 96 летному юбилею 

Общенационального Лидера Азербайджана Г. А. Алиева, 2019; 

-   21 Ulusal Mekanik Kongresi TUMTMK, Türkiye, Nigde, 2019; 

-   8th International Euroasian Conference on mathematical sciences 

and applications, Baku, 2019; 

-    Республиканская научная конференция «Актуальные 

проблемы математики и механики» посвящённое 97 летному 
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юбилею Общенационального Лидера Азербайджана Г. А. Алиева, 

2020; 

- 7th International Conference on Control and Optimization with 

industrial applications, Baku, 2020; 

-    Республиканская научная конференция «Актуальные 

проблемы математики и механики» посвящённое 98 летному 

юбилею Общенационального Лидера Азербайджана Г. А. Алиева, 

2021; 

-  Республиканская научная конференция «Актуальные проблемы 

математики и механики» посвящённое 99 летному юбилею 

Общенационального Лидера Азербайджана Г. А. Алиева, 2022; 

- International Conference «Modern Problem of Mathematics and 

Mechanics» devoled to the 110th anniversary of academician Ibrahim 

Ibrahimov, Baku, 2022; 

- 8th International Conference on Control and Optimization with 

industrial applications, Baku, 2022; 

- «Funksiyalar nəzəriyyəsi, funksional analiz və onların tətbiqləri» 

mövzusunda Respublika konfransı, Bakı, 2022; 

- На научных семинарах Механико-математического факультета 

БГУ март 2021, ноябрь 2022, февраль 2023. 

- На расширенных семинарах кафедры Теоретическая механика и 

механика сплошной среды 2020,2021,2022, 2023. 

 

Organization of work execution 

 The dissertation work was completed at the Department of 

Theoretical Mechanics and Continuum Mechanics of Baku State 

University. 

Scope and structure of the dissertation 

Structure and volume of the dissertation (in characters, 

indicating the volume of each structural unit separately). The total 

volume of the dissertation work is 421,229 characters (title page - 758 

characters, table of contents - 2758 characters, introduction - 52,735 

characters, first chapter - 118,533 characters, second chapter - 39,775 

characters, third chapter - 66,224 characters, fourth chapter - 140,446 

characters). The list of used literature consists of 204 titles. 
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                  CONTENT OF THE DISSERTATION 

The introduction substantiates the relevance of the problem 

considered in the work, formulates the purpose of the work and the 

objectives of the research, shows the scientific novelty, theoretical and 

practical significance of the results obtained. 

The first chapter examines the influence of external fields and 

influences on the load-bearing capacities of structural elements and 

solids during creep. For mathematical modelling and solution, direct 

methods of mathematical analysis are used, a mixed-type variational 

method is developed for three-dimensional theory, and the Rayleigh-

Ritz method is used to determine the stress-strain state of 

inhomogeneous anisotropic elastoplastic bodies under the action of a 

neutron flux at small and terminal deformations. 

  In paragraph 1.1, a variational method of a mixed type of 

plasticity theory is formed for inhomogeneous and composite bodies 

under irradiation, with independent variation of the fields of 

displacement speeds and stresses. It is assumed that the physical and 

mechanical characteristics of the medium depend on the radiation 

dose. A modification of this variational theorem is given for the case 

of a composite material, when in a heterogeneous medium different 

phases (inclusions) are clearly expressed. 

Note that the change in volumetric deformation during neutron 

irradiation occurs quite slowly, because of which, when assessing the 

stress-strain state, dynamic effects can be neglected, and the duration 

of irradiation in time t can be considered as a parameter. Then, with a 

constant irradiation intensity, as a parameter characterizing the 

formation process, along with time, d  the irradiation dose can be 

taken, determined by the formula d n t= , where n (1/см3) 
 
is the 

number of neutrons per unit volume of flow, and is the average flow 

velocity ( d the unit of measurement is neutron(1/см2)) In this regard, 

the dot above the values will mean differentiation with respect to . If 

we now accept that 
)1(

ij
e  the strain rate satisfies an elastic-plastic law 

such as flow theory, and also that   both mechanical characteristics 
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and volumetric expansion are functions of coordinates 
kx  and 

radiation dose d , then taking the rule of summation over repeating 

indices, we can write 

( )  ( ),3,1,,,,)1( ==
•

mkjidxCe kmk

ijkmij
               (1.1)

 

               ( ) ,,)2(

ij

k

ij
dxe  =                                           (1.2) 

Let a body of volume V  be given in three-dimensional Euclidean 

space, bounded by a sufficiently smooth surface S . On some part of 

it, only 
k

u the components of the displacement vector are specified 

u
S , and on the remaining part 


S - the loads 

kT , and 


SSS
u

=

.  

Let us introduce the functionality 

 −








−−−=
V

ij

ij

ijkm

ijkm

kmij

ijkmij

ij dVCCeJ  
2

1  

( ) −−−
uS

ii

i

S

i

i dSuuTdSuT .



                            (1.3) 

When writing functional (1.8), the starting point, on the one hand, was 

the variational principle of Sanders, McComb and Schlechte in the 

theory of creep, and on the other hand, its modification for the case of 

elastoplasticity. Section 1.2 provides a variational method for solving 

the problem of the limit state of a multilayer rigidly reinforced 

nonlinear-elastic rod under creep with a modification of the mixed 

variational principle for the case of heterogeneous media. 

Within the framework of geometrically nonlinear theory, for a 

nonlinear-elastic anisotropic material from physical laws 

( )sn

ij

v

ij f  =                                   (1.4) 

we get the final form of the functional 

( )

( ) dSuTdSuuT

dVpuuJ

S

i

i
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i
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ij

ij

v

ijkj
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2
2

1

2

1

      (1.5) 
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It is assumed that the rod, rectangular in length l  and thickness, is 

composed of alternating layers of different thicknesses h2 , divided 

parallel to its side faces s . We denote the thickness of each layer by k  

, then hs 2...21 =+++   . Based on a physical hypothesis, we accept 

a theory in which the creep rate is described with the dependence: 

1 1, , [ 0,1,...( 1)]m

k k kp A a z a k s+ +=   = −  .        (1.6) 

Let us define the instantaneous deformation for the package as 

a whole in the form of a single equality 

10

11

1 +

++
























+= kk

n

kk

v aza
E

e



           (1.7) 

Here is −n the nonlinearity index, which takes even values 

(2,4,6,...), 1+kE  and −+

0

1k the elastic modulus and proportionality limit 

of the −k  layer, respectively. In (1.11) and (1.12) the notation is 

introduced 

)0( 0

0

=+−= 
=


k

j

jk ha                        (1.13) 

Let us now consider the stability of the selected rod under 

creep, centrally compressed by force constT = . Assuming that one 

transverse dimension of the rod is equal to unity, considering the 

nonlinearity of only the deflection and relation (1.7), we write the 

functional used as 

1

1

1 2
2
, 0

100 0 1

1

1
00

1 1
1 ( 1)

2 2

.

k

k

k

k

nal h l s

x
kkh a k

al s
m

k
k a

J w dxdz n dxdz
E

A dxdz

 
 





+

+

−

+=− +

−

+
=

  
    = + − + + −     
   

−

   

 

     

    (1.9) 

Assuming that the stress distribution along the thickness is 

linear and that the hypothesis of flat sections is fulfilled, we formulate 

boundary conditions corresponding to the case of rigid pinching of 

both ends. 
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For subsequent application of the Rayleigh-Ritz method when 

calculating the critical buckling time, it is necessary to specify the 

bending and moment shapes. As the first eigenfunctions satisfying the 

boundary conditions, we have 

)1(coscos)(),(

),1(sinsin)(),(

l

x

l

x
TbtxM

l

x

l

x
tatxw

−=

−=







              (1.10) 

The stationarity of the functional (1.9) leads to a system of two 

ordinary differential equations, after which we obtain: 
2 2

1 1

2 2 1

0 0

/ /
2

n m
n i v i n j c j

n i m j

i j

d d K K
 

        + +

+ +

= =

  
= − + +   

   
  ,    (1.11) 

Where /a h = and 1 1
mA E t =  are the independent 

variables, and 
2 2 1, , , , ,i v c

n i jK     + +
 dimensionless quantities. 

Equation (1.11) must be supplemented with the initial condition 

,)0( v =                               (1.12) 

in which −v the value of the deflection that occurs 

immediately after the application of a load  . 

Let , 3s = , 0 0

1 3 1 3 1 3 1 3, , ,E E A A   = = = = , denoted by

0 0 0

2 1 2 1 2 1 1 2 1 1, , , , .A A a E E E        = = = = =  and considering 

,105,103 22 −==  that Tables 1-3 give numerical values depending 

on )4;25,0(),4;25,0( ====    , with 1

0
10−=  and 51011,3 −=w

. This choice eliminates instantaneous buckling of the rod, because 

with the accepted system parameters it is equal to 5103,7 −  

Table 1.1. Dependence of deflection value v−  on parameter   

  0,25 1,25 2,25 3,25 
v  0,118 0,120 0,122 0,125 

Table 1.2. Dependence of deflection value v− on parameter   

  0,25 1,25 2,25 3,25 
v  0,118 0,128 0,139 0,148 
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Table 1.3. Dependence of deflection value v− on parameter   

  0,5 1,5 2,5 3,5 
v  0,145 0,138 0,131 0,122 

In Figure 1.1. The dependences of the critical time on the values of 

kp
 ,  ,  ,   and   are given. The case of a homogeneous rod 

corresponds to the values when 1====  . Then 129,0=v

and at 53,11 10 ,w −=  5( 6,72 10 )kpw −=   104,16 10 .kp =     

Section 1.3 presents a study of buckling of a multilayer thin-walled 

shell during creep under the influence of a distributed load. The task 

of determining the stress-strain state (SSS) in structural elements 

during creep, considering geometric nonlinearity, made of composites 

and various nonlinear elastic materials, and interconnected through 

full adhesion, is mathematically complex. The problem is doubly 

nonlinear, and it may be necessary to study solutions to nonlinear 

boundary value problems with discontinuous coefficients. To solve the 

problem using the variational method in combination with the 

approximate Ritz method, we define the approximating functions for 

the deflection and bending moment in the form 

( ) ( ) ( )  ltbMltataw cos,cos
0

=+=                        (1.13) 

Due to the law of plane sections, the total deformation will be: 
2 2

2 2 2

1 1w w w
r

R R R


 

  
= + + 

  
                (1.14) 

From the stationary condition of the functional, we obtain a 

differential equation relating the dimensionless time to the 

dimensionless deflection, the parameter of which is the dimensionless 

load ω. 
( )
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
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+
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i
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n
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0
11
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1

0
12

13

12

322

1

3
2

3

3
2

19

4

9







         (1.15) 

The differential equation with the initial condition for the deflection 

will constitute the Cauchy problem. 
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We assume that the acting compressive load ԛ, uniformly distributed 

over the surface, is less than the critical Euler force 
kr

q , i.e., q <
kr

q . 

In this case, the shell, because of instantaneous elastic deformation 

under load q, takes on a new position. This position must be stable, 

otherwise stability for this structural element is lost within the limits 

of elasticity, without the occurrence of creep deformation. Among the 

kinematic possible positions of the shell, the unstable state 

corresponds to the state within the limits of elasticity in which the 

functional 

                  

( )
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n dr d R wd
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+

   
= + −  

   

  
 − + + + 
   

 

  

    (1.16)       

takes a stationary value. We will approximate the deflection and 

bending moment in the same mode as for creep (1.13), but with 

amplitudes depending on the load parameter. 

( ) ( ) ( )   cos,cos
0

qbMqaqaw =+=              (1.17) 

The phenomenon of loss of stability with buckling of the shell during 

elasticity occurs when the load reaches a critical value and remains 

unchanged. We differentiate stresses within the limits of elasticity in 

relation to the monotonically changing load ԛ, so that from the 

condition of stationarity of the functional, the corresponding loss of 

elastic stability with buckling, the following differential equation is 

obtained in dimensionless quantities 

( )

( )
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+ ++
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= =
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

 

     

 (1.18) 

Suppose that in a three-layer shell the facing layers are made 

of the same material, with the same thickness, then
0 0

1 3 1 3 1 3 1 3/ , , ,E E B B    = = = . To numerically implement the 

solution to the problem with compiling a table and constructing 
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characteristic graphs, we introduce the following dimensionless 

quantities 0 0

1 2 2 1 1 3 2 1/ , / , / , / , /R h E E B B        = = = = = ,    

0

1 1/E = , with values 0 0

1 320, 2, /    = = = , 3= . Equation 

(1.18) is solved numerically using the Runge-Kutta method, taking the 

value for the initial dimensionless deviation 1,0
0

= . From the 

condition that the numerator equals zero, we obtain the value of the 

critical load. The solution to the elastic problem will correspond to the 

number 

                                                   ( )0 0,1273 = .                         (1.19) 

The Cauchy problem for equation (1.15) - (1.19) is also solved by the 

Runge-Kutta method for various values of dimensionless parameters. 

For values of the dimensionless critical time, corresponding to the 

moment of loss of stability with buckling, we will have (at 5m = ): 

                                             

 

          

 

 

In 

paragraph 1.4, the variational principle is proven for determining the 

bearing capacity of solids and structures during creep, considering the 

effects and influence of external physicochemical fields. It is assumed 

that instantaneous elastoplastic deformation 
)1(

ij
 , creep deformation 

ij
p and deformation resulting from irradiation 

)2(

ij
  occur in the 

material, so that covariant the components of the total deformation will 

be 

                                              ijijijij
p++= )2()1(                (1.20) 

However, the phenomenon of creep is accompanied by the process of 

accumulation of damageability of the material and the generalized 

theory formed by Yu.N. Rabotnov4 in the form of the concept of the 

 
4 Работнов Ю.Н. Ползучесть элементов конструкций / М. Наука, 1966. -752 с. 

n  𝛼 = 𝛾 = 1.75, 𝜇 = 2 𝛼 = 𝛾 = 𝜇 = 1 

2  𝜏𝑐𝑟 = 3.92 × 104 𝜏𝑐𝑟 = 3.42 × 104 

4  𝜏𝑐𝑟 = 3.15 × 103 𝜏𝑐𝑟 = 2.6 × 103 

6  𝜏𝑐𝑟 = 342 𝜏𝑐𝑟 = 300 
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equation of mechanical state represents an opportunity for their joint 

description if damageability parameters are introduced as structural 

parameters in the kinetic relationships of creep.  

To model the processes of non-stationary corrosion, long-term 

strength, and their relationships for a structurally stable material at a 

given time, we can write: 

                                 ),...,,,(
1 Nijij

qqTpp  =               (1.21) 

During deformation, the structural parameters change 

according to the following non-integrable equations: 

            ),...,2,1(, nidTddtdbdpadq ii

rs

i

rsrs

i

rsi
=+++=    (1.22)

   

Here iii

rs

i

rs dba ,,,  are functions of tTp rs

ij
,,, and Nqqq ,...,, 21 also of 

parameters, i.e.  ),...,,,,,,( 21 Nij

ii qqqtTp  =  etc. 

Radiation training, according to experimental evidence, causes a 

significant decrease in the ductility of steels and nickel alloys, but at 

significant doses of radiation (up to 1022 neutrons/cm2) they retain 

the plasticity zone at normal and moderately elevated temperatures. 

For the deformation rate we will have the utility 

),,,( cpp ijij  


 =                    (1.23) 

kinetic equation of diffusion considering corrosion of the environment 

kccDdivc −= )(                           (1.24) 

kinetic equation of damage 

),,( c =                               (1.25)        

Here ),,( cDD  = , constk = the characteristic rate of a 

chemical reaction, kc  -is the rate of decomposition of chemical bonds 

under the influence of an aggressive chemical environment. 

Among the many effects caused by neutron irradiation, issues related 

to volumetric expansion and changes in the physical and mechanical 

properties of the body h  occupy a special place. If the flux intensity 

𝑛𝑣 does not depend on time, then the total neutron flux 

)2(exp hznvtN −=  neutron/cm2 will pass through a unit area of a 

plate with thickness after time t. In the case when deformations and 
 

[223-238] 
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displacements are constrained for some reason, then internal forces 

and stresses arise in the deforming body, and the components of the 

deformation tensor change completely.  

 •
= kmk

ijkmij dxC  ),()1(    ( , , , 1,3);i j k m =    ,),()2(

ij

k

ij dx   =  
Finally, for the components of the total strain rate tensor we will have 

  .
ijij

km

ijkmij
pC   ++=

•

                        (1.26) 

Note that when 0=d  we have 0= , and the covariant components 

of the fourth-rank tensor 
ijkmC  for the anisotropic case are the physical 

and mechanical characteristics of the material of the unirradiated body. 

In metals and alloys, as well as in structures made from them, because 

of irradiation at high temperatures, the processes of creep and 

accumulation of damage are accelerated, depending on the type of 

stress state. Neglecting dynamic effects, let us consider the 

equilibrium of a deformable solid body V with a volume and limited 

by a sufficiently smooth closed surface S . On some part of it uS , only 

the components of the displacement vector iu  are specified, and on the 

remaining part S - the load 
j

T . Since the variational theorem will 

be used to solve problems of buckling of thin-walled structural 

elements, finite strain relations and nonlinear equilibrium equations 

are used here5. Then the geometrically nonlinear theory of equilibrium 

of an elastoplastic body in a chemically active medium during creep 

under the influence of a neutron flux will be described by means of the 

following boundary value problem 

  ,0)( =+ k

i

k

i

ij

j
u    ),3,1( =k    ,ijij

km

ijkmij pC   ++=
•  

,2
kj

k

iijjiij
uuuu ++=    ,ii TT =  ,Sxk      (1.27) 

,ii uu =    ,u

k Sx    ,)( kccDdivc −=   ).,,( c =
 

Here ( )k

i

k

ij

ijk unT  += , 
uS S S=  . 

 
5 Амензаде Ю.А. Теория упругости / М. Высшая школа, 1976. – 272с. [228-

231] 
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In some variational principles, based on varying the tensors of the rates 

of change of stress and strain, a more general assumption is made 

about the law of elastic-plasticity for instantaneous deformation. 

  ,),()1( •

= klk

ijklij
dxC    

3Exk   

Deformation during creep of solids and structural elements leads to a 

change in shape, redistribution of stresses and loss of stability. 

Therefore, creep is one of the important factors in structural analysis 

at high temperatures. 

In three-dimensional Euclidean space, we will consider the process of 

creep in an elastoplastic anisotropic medium, which is subject to 

irradiation by a neutron flux. In the case of a complex stress state, the 

dependences of the stress components on the strain components in all 

stages of deformation must be known. These dependencies are 

established in the theories of plasticity and creep. 

             In this work, the load-bearing abilities of elements of a thin-

walled structure and solid bodies under creep under the influence of 

external physical fields and influences are investigated. A mixed-type 

variational principle for creep is formulated for geometrically 

nonlinear problems of plastic bodies, considering damage, the 

diffusion process, and irradiation with a neutron flux within the same 

functional. 

 +−++−−−+=
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                  (1.28) 

In the functional, the independent variable quantities , ,ij

iu   are 

),( 


  = and ),( 
  cc =  weight functions, which are 

selected depending on the type of interpolation functions to refine the 

approximations. In order to overcome the difficulty of solving the 

variational problem using direct methods, refusing to satisfy the 

kinetic equations (1.24) and (1.25) exactly, we replace them with 

approximate integral relations              

0)],,([
2

− dVp
V

ij  


 , 0])([

2

+− dVkccDdivc
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 , 
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where functions of damageability and levels of concentration of an 

aggressive environment are sought in the form 

;)()(
1


=

=
p

k

jkk xta      ;0)0( =ka ;)()(
1


=

=
m

k

jkk xtcc       ;0)0( =kc  

0
(0) 0, ( ) / 0k k x

d x dx 
=

= =  , which is a shifted initial-boundary 

condition for the function (at turns into a second-order parabolic 

differential equation with constant coefficients). 

Thus, this creep problem is reduced to a system of differential 

equations with a known system procedure, i.e. with an algorithm that 

allows you to approach the mathematical solution of these problems. 

Many different direct methods for constructing approximate solutions 

are possible, as well as direct methods for qualitative analysis of the 

existence and uniqueness of a solution or the derivation of a priori 

estimates for this problem. 

The statement is proven that the stationary conditions of the functional 

(1.28) are equivalent to a system of equations and relations, which is 

a mathematical model of the problem of determining the true stress-

strain state of an elastoplastic continuous medium irradiated by a 

neutron flux with damage in physicochemical fields in the process of 

creep at finite deformations. 

Let us find the variation of the functional (1.28) in a curvilinear 

coordinate system. Considering that the variation operator δ acts on 

the speed of quantities, then we obtain: 
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   (1.29)  

This took into account the fact that, by definition, volumetric 

deformation is a function of coordinates and irradiation dose, and the 

rate of creep deformation in the general case depends on stress, 

temperature, time and structural parameters, therefore ,0= 
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,0=
ij

p , and to satisfy the boundary conditions 0=iT , on S  the 

equalities 0=iu  on uS  are accepted. , respectively. Since the tensor 

ijklC does not depend on speed, the following relations hold true:        

,0=
ijkm

С
  

,0=
ijkm

С
  

,)1( kl

ijklij
C   =

 
and, equality kmij

ijkm

ijkm

ijkm
СС   =  

From the symmetry of the stress tensor we obtain the equality of the 

third and fourth terms in (1.29). Using the Gauss-Ostrogradsky 

formula, taking into account the symmetries of the stress tensor and 

carrying out several mathematical projections, we obtain a variation 

of the functional, where the terms are collected at the same 

independent variations: 

( )(1){[ ( )] ij ij k k

ij ij ij ij j i i k

V

J p u u       
•

•  = − + + −  +  +
   

( )   + − + [ ( ) ] }c c div D c kc c dV −  − +

( ) ( ) 0ij k k k k

i i j k k k

S Su

u n T u dS u u T dS



   
•

 + +  − − − =
    

Taking into account the main lemma of the calculus of variations and 

formula (1.26), from the condition of vanishing, as the Euler equations 

in a curvilinear coordinate system, we obtain a system of complete 

relations for the boundary value problem (1.21). 

Modified variational principle for a composite body. 

  It is known that the strength of real solids and structural elements is 

several orders of magnitude less than the theoretical strength of an 

ideal crystal lattice of structural metals, corresponding to the 

simultaneous rupture of all intermolecular bonds, which is usually 

associated with the existence of lattice defects. The strength of most 

polymers for structural purposes does not exceed 100–150 MPa, and 

Young's modulus of elasticity is 3–4 GPa. Further improvement of the 

mechanical properties of polymers through the design of the chemical 

structure of molecules is not promising, so we must look for other 

ways to improve the elastic-strength characteristics of structural 
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polymers, among which the transition from polymers to 

nanocomposites is currently considered the most promising. 

Let us now move on to the description of the composite material. 

When formulating the contact boundary value problem, we assume 

that the body 
k

V  consists of K  elements. An element with a number 

occupies a volume with a surface 
k

S . We assume ,)2()1(

kkk
SSS =

that where is )1(

k
S the boundary of the volume that does not have 

common points with )2(

k
V , a is the boundary of the volume )2(

k
S  is 

part of the common boundary of the body 
)0(T . Let forces be given 

on the surface, )1(,
k

SS and )2(

k
S displacements )0(


u  on the remaining 

surface. Let us assume that the surfaces are sufficiently smooth. 

The theory of composite media used is based on the following 

premises: 

- during the deformation process, the elements contact each other 

along their entire common surface; 

  -deformations are finite (geometrically nonlinear); 

  - the conditions of complete adhesion are met on the contact surfaces. 

Further, we will proceed from the fact that the materials of 

different elements are different and their physical and mechanical 

properties are described according to an elastoplastic law such as flow 

theory. Then the geometrically nonlinear equilibrium theory is 

described by the following boundary value problem: 

  ( )  ,0
)()(

=+ 
kii

ij

kj
u   ( )3,1=           (1.30) 

  
( )  ( ) ( ) ( ) ( ) ,mn

ijmn k k ij k k iji j k
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= + +            (1.31) 
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                           ,
)()( kiki

uu =     ,
ku

S                             (1.33) 

  
,

)()(



kk
TT =      ,

k
S    где  ( ) 

iij

ij

kk
unT +=

)()(        (1.34) 

It is important to note here that in the most general case, 

according to the general formulation of the problem 
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To the given equations (1.30) - (1.34), conjugation conditions 

on )1(

k
S . With complete adhesion between adjacent elements on the 

interface surface, we have continuity of displacements, where in 

expanded form the absence of a jump in the corresponding quantities 

has the form 

           ,
)()(

−+ =
kiki

uu   .
)()(

−+ = i

k

i

k
TT                     (1.35) 

Here, the “+” and “–” signs indicate the values of the functions 

at the junction points when approaching them to the right and left of 

the contact line. 

As before, again select an arbitrary element with volume 
k

V  . 

Following (1.28), we write the corresponding functional for this 

volume: 
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(1.36) 

Here 
ku

S  and 
k

S - are the sections of the boundary where 

displacements )(ki
u  and forces 

i

k
T

)(  are considered known or given 

by formulas (1.39) and (1.40). Now let’s move on to generalizing the 

functional for the entire volume when the body is composed of K 

elements. It is easy to see that in this case the surface integrals in (1.36) 

cancel each other and the functional finally takes the form 
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The second chapter, using the discrete analytical method proposed 

by S.D. Akbarov6 and co-authors, provides solutions to the problem of 

the dynamics of a hollow sphere with inhomogeneous initial stresses, 

and it consists of five paragraphs. 

  Paragraph 2.1 is devoted to the results of important studies over the 

past period and showing the state of the issue, highlighting the purpose 

of the study, with the justification of the influence of non-uniform 

initial stresses on the dynamic response of layered hollow and solid 

spheres. In Section 2.2, the problem of the dynamics of a hollow 

sphere with non-uniform initial stresses is formulated.  

__________________________ 
6 Akbarov S.D. Dynamics of pre-strained bi-material elastic systems: 

linearized three-dimensional approach / Springer-Heidelberg. New York, 

2015. P-1004 [15-19] 

A hollow sphere with an inner radius b and an outer radius a is 

considered under the assumption that this sphere is loaded with 

uniformly distributed normal forces with intensities on both the outer 

p and q inner surfaces, respectively.  

Let us present a mathematical formulation of the problem of the 

dynamics of a hollow sphere with initial inhomogeneous stresses 

given within the framework of linearized field equations. 
3 3 3 3 3 3 3 3 3 3 3 3

(0) (0) (0)

3 3 3 3 3 3 3 3 3 3 3 3

( ) ( ) (2 ) (2 )
, ,

( ) ( ) 2( ) 2( )
rr

a r b b a r a r b b r a
p q p q

a b r a b r a b r a b r
   

− − + +
= − − = = − +

− − − −
 

(0) (0) (0) 0,r r    = = =                                    (2.1) 

The sphere with these initial stresses is assumed to receive a dynamic 

harmonic excitation over time, and it is required to determine how 

these initial stresses affect the dynamic behavior (e.g., natural 

frequencies) of the sphere.  
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According to the three-dimensional linearized theory of elastic waves 

in initially stressed bodies, these equations in spherical coordinates 

),,( r  can be represented as follows. 

Equations of motion: 
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Elasticity ratios: 
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Relationships between deformations and displacements: 
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In (2.2) and (2.3) ttrr ,...,  are the components of the Kirchhoff stress 

tensor in a spherical coordinate system. 

As boundary conditions that are satisfied on the inner and outer end 

surfaces of the hollow sphere, we take the following homogeneous 

conditions: 

.0,0,0,0,0 =====
===== brrbrrbrrrarrarrr ttttt                   (2.6) 

It is possible to formulate inhomogeneous boundary conditions instead 

of the conditions given in (2.6), and the corresponding initial 

conditions for non-stationary dynamic problems can also be 

formulated. Note that in the case when there are no initial stresses in 

the sphere, i.e. in the case where 0== qp , the above formulation 

coincides with the corresponding one in the framework of classical 

linear elastodynamics. Section 2.3 is devoted to the selection and 

development of a method for solving the problem. According to the 

expressions in (2.1), the system of equations in (2.2) - (2.5) is an 

equation with variable coefficients, the analytical solution of which, in 

the general case, is very difficult and in many cases impossible. As a 

rule, until recently, the system of equations (2.2) -(2.5) were solved 

numerically using various numerical methods, but in the case under 

consideration there is the following peculiarity in relation to the 

variable coefficients: these coefficients depend only on the coordinate 

r. This feature of the coefficients allows us to use the discrete analytical 

method, developed and used in the works of Akbarov et al., to solve 

these equations. Section 2.4 provides a discretization of the solution 

domain and the derivation of equations for the functions included in 

the classical Lamé decomposition. To use the discrete analytical 

method, the interval ],[ bar   is divided into a certain number of 

subintervals. To do this, we introduce notations and divide the interval 

, where the notations bR =1
and aR =2

are introduced, are divided 

into subintervals , where 

    ( )( )1 1 2 1 2 1 1 2 1, , , 1 /N

k k k kU R R R R R R k R R N= = = + − − and 

./)( 1212 NRRkRR k −+= Within each subinterval ],[ 21 kk RR , the 

functions 
( ) ( ) ( ) ( )0 0

,rr r r   and )()0( r  are taken as constants, which 
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are equal to the values 2/)( 121 kkkk RRRr −+= , i.e. are written in the 

form
( ) ( ) ( ) ( )0 0

,rr k kr r   and )()0(

kr   instead of the corresponding 

functions. After this discretization of the interval ],[ 21 kk RR , the solution 

to the full system of equations (2.2)-(2.5) is performed within each 

subinterval separately, in which the variable coefficients 

)(),( )0()0( rrrr   and )()0(

kr in the system of equations (2.2) and (2.3) 

are replaced by constants 
( ) ( ) ( ) ( )0 0

,rr k kr r   and )()0(

kr , where 

2/)( 121 kkkk RRRr −+=  . On the mating surfaces between 

subintervals, the continuity conditions for the force and displacement 

vectors are satisfied. Denoting the thickness of each sublayer by 

NRRhk /)( 21 −=  and introducing an additional superscript for 

quantities related to the (k)th sublayer, these continuity conditions can 

be written as follows 
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(2.7) 

Section 2.5 is devoted to solving the system of equations (2.1) - (2.5). 

To solve the system of equations (2.2) - (2.5) for the −th sublayer, we 

use the following classical Lamé expansion, according to the 

monograph by Eringen et al. 
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Substituting expressions from (2.8) into equations (2.2) - (2.5) for the 

k  sublayer, and performing cumbersome mathematical 

transformations, we obtain the following equations for the functions 
.,, )()()( kkk   
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In paragraph 2.6. Analytical solutions of equations for the functions 

included in the Lamé expansion for the problem of natural oscillations 

are obtained. In accordance with well-known physical and mechanical 

considerations, the functions )()( , kk  and )(k  are presented 

( ) ( )( , , , ) ( , ) (cos )cos ,k k m i t

nr t F n r P m e 

    =  

( ) ( )( , , , ) ( , ) (cos )cos ,k k m i t

nr t F n r P m e 

    =           (2.11) 

( ) ( )( , , , ) ( , ) (cos )cos ,k k m i t

nr t F n r P m e 

    =  

where )(cosm

nP in expression (2.11) denotes the associated Legendre 

functions with the m order and the n harmonic. 
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Thus, substituting expressions (2.11) into equations (2.9) and (2.10), 

we obtain the following equations for the functions 
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(2.13) 

Thus, solutions to equation (6.2) are represented through spherical 

Bessel functions as follows. 
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In (2.15), the functions )(2/1 crJ +
and )(2/1 crY +

 are Bessel functions 

of the first and second kind with non-integer order. In the case when 

0)()()( )0()0()0( === kkkrr rrr   , according to which 1)()( == kk  , 

the expressions in (2.14) coincide with the corresponding ones 

obtained in the classical case. Using relations (2.14), (2.11). (2.8), 

(2.5) and (2.4), expressions are obtained for the displacements and for 
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the components of the stress tensor. To simplify the writing of the 

resulting expressions, two sets of complete orthogonal functions in 

 ,0  are introduced, defined as follows7: 
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(2.16) 

Using the notation in (2.16), we write the following expressions for 

the required functions: 
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_____________________________ 
7 Guz A.N. Dynamics of an elastic isotropic sphere of an incompressible material 

subjected to initial uniform volumetric loading // IAM, vol.21, No8, 1985, pp.738-

746 
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Where .,...,2,1 Nk =  As noted above, here N -is the number of 

subintervals into which the solution region is divided relative to the 

radial coordinate r, and this number is determined in accordance with 

the convergence of the numerical results. Thus, substituting 

expressions (2.17) considering the function with coefficients 

expressed through the Bessel functions into the boundary and contact 
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conditions (2.6) and (2.7), we obtain two unrelated systems of 

homogeneous algebraic equations. The first (second) system contains 

unknowns ( ) ( ) ( ), ,k k kA B E and )(kG
)(( kC and ))(kD . Equating to 

zero the determinant of the matrix of coefficients of the first and 

second groups separately, the following equations are obtained for 

determining the frequency of natural vibration. 

Nqqqq 4,...,2,1;,0)det( 2121
==  (for spheroidal vibration).                  (2.18)  

Npppp 2,...,2,1;,0)det( 2121
==  (for torsional vibrations).                        

(2.19) 

The expressions for the components of the matrices )(
21qq  and )(

21qq

can be easily determined from the expressions given in (2.17). Section 

2.7 contains the results of numerical examples, analysis of the 

influence of initial stresses on the natural frequencies of a hollow ball. 

Numerical results are obtained by solving equations (2.18) (for the 

spheroidal mode) and (2.19) (for the torsional mode), and this solution 

is obtained numerically using the algorithm we developed in 

MATLAB and the corresponding PC programs using the method of 

dividing a segment in half (bisection method ). The results refer to 

dimensionless natural frequencies, denoted as  //a= , and 

were obtained for various values of the coefficients /,/ pab  and  

/q . Here the last two relations characterize the initial stresses in a 

hollow sphere, and the numerical results differ in vibration harmonics 

and in the sequence of roots in each harmonic. 

The third chapter of the dissertation, consisting of five paragraphs, 

reflects the results of a study of the natural vibrations of a multilayer 

hollow sphere in cases where there is a preliminary inhomogeneous 

stress state in the sphere filled with a compressible fluid. The first 

paragraph provides a brief overview of those works that contain 

research over the past thirty years. The second paragraph is devoted to 

the formulation of problems and the mathematical formulation of the 
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problem. A multilayer hollow sphere is considered, the centre of which 

is connected to the spherical Or  and Cartesian 
1 2 3Ox x x  coordinate 

systems. It is assumed that before the vibration of the hydroelastic 

system described above, normal compression forces are uniformly 

distributed on the inner and outer end surfaces of the sphere with 

intensity q  and p , respectively. As a result of the action of these 

external forces, non-uniform initial stresses arise in the sphere. The 

study is described by three-dimensional linearized equations of elastic 

wave theory and linearized hydrodynamic equations of a barotropic 

inviscid compressible fluid. Three-dimensional linearized equations of 

inviscid fluid flow and continuity equations: 

                       0
v

p
t


= −


 ,     0 0n

nv
t


+  =




 .             (3.1)  

Here             
1 1

sin
r

p p p
p e e e

r r r
 

 

  
 = + +

  
 

   ( )
( )

2

2

1 1 1
sin

sin sin

rn

n

r v v
v v

r r r r



 
   

 
 = + +

  
             (3.2) 

Three-dimensional linearized equations and relationships for wave 

propagation in elastic bodies with inhomogeneous initial stresses are 

given in this dissertation work in the second chapter (2.2) - (2.5). For 

the problem under study, these equations are performed separately in 

each layer of the multilayer sphere. It is assumed that between adjacent 

layers (at the contact surface between a solid and a liquid) ideal contact 

conditions (corresponding to the conditions between a liquid and a 

sphere) are observed.  

Conditions for compatibility between the liquid and the inner end layer 

of the sphere: 
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(1)
r

r r b

r b

u
v

t=

=


=


,

(1)

r b

r b

u
v

t=

=


=






,
(1)

r b

r b

u
v

t=

=


=






, (1)
rr r br b

t p
==

= − , 

(1) 0r
r b

t
=

= , 
(1) 0r

r b
t

=
=                          (3.3) 

Boundary conditions on the outer end surface of the outer layer of the 

sphere: 

  ( ) 0m
rr

r a
t

=
= , ( ) 0m

r
r a

t
=

= , 
( ) 0m
r

r a
t

=
= .               (3.4) 

Contact conditions between the layers of the sphere: 

(1) (1)

(1) (2)
rr rr

r H r H
t t

= =
= , 

(1) (1)

(1) (2)
r r

r H r H
t t

= =
= 

, 
(1) (1)

(1) (2)
r r

r H r H
t t

= =
= 

, 

(1) (1)

(1) (2)
r r

r H r H
u u

= =
= , 

(1) (1)

(1) (2)

r H r H
u u

= =
= 

, 
(1) (1)

(1) (2)

r H r H
u u

= =
= 

, 

(2) (2)

(2) (3)
rr rr

r H r H
t t

= =
= , 

(2) (2)

(2) (3)
r r

r H r H
t t

= =
= 

, 
(2) (2)

(2) (3)
r r

r H r H
t t

= =
= 

… 

( 1) ( 1)

( 1) ( )
m m

m m

r H r H
u u

− −

−

= =
= 

,       
( 1) ( 1)

( 1) ( )
m m

m m

r H r H
u u

− −

−

= =
= 

,     

( ) 0m
rr

r a
t

=
= , 

( )
0

m
r

r a
t

=
= , 

( )
0

m
r

r a
t

=
= ,

                        
(3.5) 

where ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2
,..., ,...,

m m
H b h H b h h h a= + = + + + + = , …,  

This concludes the formulation of the problem of natural vibration by 

considering the initial stresses 
( )0( )i
rr r ,

( )0
( )

i
r  and 

( )0
( )

i
r , which 

are determined from the solution of the corresponding static problem 

formulated within the framework of the linear theory of elasticity. This 

static problem relates to the determination of the stressed state in a 

multilayer hollow sphere in the case when uniformly distributed 

normal forces with intensity act  on the internal q  and p external 
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surfaces of this sphere. In accordance with the problem for a single-

layer sphere, we use the following representation 

( )
( ),0 ( )

2
( )

i
i i

r
B

u r A r
r

= + , 
( ),0

0
i

u = , 
( ),0

0
i

u = , 
( )

( ),0 ( )

3
( ) 2

i
i i

rr
B

r A
r

= − , 

( )
( ),0 ( ),0 ( )

3
( ) ( )

i
i i i B

r r A
r

= = +   .                       (3.6) 

The unknown constants in (3.6) are determined from the following 

boundary ( )iA and ( )iB contact conditions 

(1),0 ( )rr
r b

r q
=

= − , 
(1) (1)

(1),0 (2),0
rr rr

r H r H= =
=  , 

(1) (1)

(1),0 (2),0
r r

r H r H
u u

= =
= , 

(2) (2)

(2),0 (3),0
rr rr

r H r H= =
=  , 

(2) (2)

(2),0 (3),0
r r

r H r H
u u

= =
= ,

( 1) ( 1)

( 1),0 ( ),0
m m

m m
rr rr

r H r H
 

− −

−

= =
= , 

          
( 1) ( 1)

( 1),0 ( ),0
m m

m m
r r

r H r H
u u

− −

−

= =
= , ( ),0 ( )m

rr
r a

r p
=

= − .            (3.7) 

The solution of linear algebraic equations (3.7) is carried out on a PC 

using a well-known solution algorithm in MATLAB. In the third 

paragraph, the hydrodynamic equation is solved with the introduction 

of potential ( )f . 

0
2
0

( )

( , , , ) ,
f

a
p r t

t


= −



 
 

( )

( , , , ) ,
f

rv r t
r


 


=


….           (3.8) 

Where ( )f  the potential satisfies the following equation 

2
( )

2 2
0

1
0f

a t

 
 + = 

  

 , 
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2 2
2 2

2 2 2 2 2 2 2

1 ct g 1 1

sin
r

r rr r r r



   

     
 = + + + 

     
,           (3.9) 

We represent ( )f the potential in the form of the following series 

( ) ( )

0

( , ) ( , )
n

f f m
nm n

n m n

r t    
 +

= =−

=   , ( , ) (cos )cosm m
n nP m    = ,  

(3.10) 

where (cos )m
nP  - is the associated Legendre function with order m  

and with harmonics n . Using the representation 

( )( , ) ( )cosf
nm nmr t R r t=  , we obtain a differential equation solution 

that will look like: 

( )1
2

( ) ,
2

n an
a

R r K J r
r +

=



 0

a
a

a
=


                 (3.11)                                       

here 1
2

n
J

+
-is the Bessel function of the first kind with order ( 1/ 2)n +  

and K -is the unknown constant. Substituting solution (3.11) into 

equations (3.8) and (3.10), we obtain expressions for the fluid pressure 

and for the radial component of the fluid velocity vector. 

( )1
2

0
0

cos (cos )cos
2

n
m

a nn
a n m n

p K t J r P m
r


   

 +

+
= =−

= − 


  , 

( ) ( )1 3
2 20

sin (cos )cos
2

n
m

r a a a nn n
a n m n

n
v K t J r J r P m

r r


  

 +

+ +
= =−

 
=  −   

  
    

(3.12) 

Now let's consider solving elastodynamics problems that correspond 

to the system of equations (2.2) - (2.5) and note that for this purpose 

we use the discrete analytical method given in the second chapter. 

According to this method, i-each layer of the sphere 
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( ) ( ) 1i i
H r H

+
   is divided 

( )in  into numerical sublayers ( ) i
H r

( )
1 },

i
R

( ) ( )
1 2{ }
i i

R r R  ,…,
( )

( )

( )
( ) 

1

i i

n n
i i

R r R
−

   where 
( )

( ) ( )1i i

n
i

R H
+

=

and in each of them the initial stresses are assumed to be constant. 

Thus, the system of equations (2.2) and (2.3) with variable coefficients 

is reduced to the corresponding system of equations with constant 

coefficients, which are satisfied separately in each sublayer ( ) i
H r

( )
1 }
i

R . To solve the latter, we use the Lamé expansion for ( )ki

displacements. Substituting the expansion formulas in equations (2.2) 

and (2.3), rewritten for the sublayer, we obtain the following equations 

for the Helmholtz potentials ( )ki , 
( )ki  and 

( )ki . To solve the 

above equations, we present the functions ( )ki , 
( )ki  and 

( )ki  as 

follows: 

( )( )

0

( , , , ) cos( ) ( , ) (cos )coskk

n
ii m

n
n m n

r t t F n r P m
 +

= =−

=         ,  

( ) ( )

0
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n
i i m

n
n m n

r t t F n r P m
 +

= =−

=         , (3.13) 

( ) ( )

0

( , , , ) cos( ) ( , ) (cos )cosk k

n
i i m

n
n m n

r t t F n r P m
 +

= =−

=         .   

After substituting expression (3.13) into the equations for the 

Helmholtz potentials, we obtain the following equations: 

( ) ( )2 ( ) ( )
( )( ) 2

2 2

( , ) ( , ) ( 1)2
( ) ( , ) 0

k k
k k

kk

i i i i
ii n n
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 
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 +
+ + − = 

 
 

   
 

 
     
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( ) ( )2 ( ) ( )
( )( ) 2

2 2

( , ) ( , ) ( 1)2
( ) ( , ) 0

k k k k
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i i i i
ii n nd F n r dF n r

F n r
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 +
+ + − = 
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 


 
  

(3.14) 

The solution to equations (3.14) is determined similarly to the solution 

given in the second chapter, with the only difference being that instead 

of a layer k , a sublayer will appear 
ki . And they will also contain 

unknown constants 
( )ki
nC , 

( )ki
nD , 

( )ki
nE , 

( )ki
nG , 

( )ki
nA  and 

( )ki
nB  to 

determine which we use not only the conditions in (3.3) – (3.5), but 

also additional conditions for the continuity of forces (i.e. stresses 

acting on the interface between adjacent sublayers ) and displacement 

vectors between the above sublayers. The result is the following 

expressions for the mentioned displacements and stresses. 
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(3.15) 
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Here ( ) (cos )m
nm nX P =  , 1( ) cot (cos ) (cos )

sin

m m
nm n n

n m
Y n P P   


−

+
= − . 

The result is a system of homogeneous linear algebraic equations for 

unknown constants. The characteristic equation related to the spherical 

vibration mode can be represented as follows 

( )1 2
det 0q q =                              (3.16) 

( )

( ) ( ) ( )

2(1) (1) (1) (1) (1)
1 2

2 2( 1) (1) ( 1)

; 1,..., 4 ;4 1,4 2,..., 4 4 ;...;4

4 ... 4 1,..., 4 4 .... 4 4
mm m

q q k k k k k k

k k k k k k− −

= + + + +

+ + + + + + + +
 

However, this equation for the torsional vibration mode has the 

following form 

              ( )1 2
det 0p p = ,                         (3.17) 

( )

( ) ( ) ( )

2(1) (1) (1) (1) (1)
1 2

2 2( 1) (1) ( 1)

; 1,..., 2 ;2 1,2 2,..., 2 2 ;...;2

2 ... 2 1,..., 2 2 ... 2 2
mm m

p p k k k k k k

k k k k k k− −

= + + + +

+ + + + + + + +

  

In (3.16) and (3.17) 
( )i

k , indicates the number of sublayers in the i 

layer of the sphere. 

The fourth paragraph of the third chapter is devoted to numerical 

results and discussion: 

- the presence of liquid inside a multilayer hollow sphere leads to a 

decrease in the values of the natural frequency of oscillations of the 

hydroelastic system in relation to the natural frequency of oscillations 

of the same hollow sphere; - the magnitude of this influence depends 

not only on the mechanical and geometric parameters of the 

hydroelastic system under consideration, but also on the number of 

harmonics, and on the ordinal number of the roots; - the influence of 

non-uniform initial stresses on the fundamental frequency of natural 

oscillations (the first root of the frequency equation) of the 

hydroelastic system is insignificant, however, these initial stresses, in 

general, lead to a decrease in the indicated frequency; - a decrease in 

the thickness of the hollow sphere leads, in general, to an increase in 
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the influence of initial stresses on the frequency of the fundamental 

mode. 

 

 

                          Fig. 3.2. Initial voltage distribution 

 

In the fifth section, the influence of initial non-uniform stresses on the 

frequencies of natural vibrations of a hollow infinite cylinder filled 

with a compressible inviscid fluid moving along the cylinder axis at a 

constant speed filling the inside of the cylinder is investigated. 

Accurate three-dimensional linearized equations and relations of the 

theory of elastic waves and linearized equations of motion of 

barotropic inviscid fluids are used. The formulation of boundary 

conditions on the outer surface of the cylinder and compatibility 

conditions between the cylinder and the liquid on the inner surface of 

the cylinder is presented. Specific formulations are made for the 

axisymmetric case and general aspects of methods for solving the 

formulated problems are considered. 

In the fourth chapter of the dissertation, within the framework of a 

model of a piecewise homogeneous body using exact three-

dimensional equations and relations of elastodynamics, the influence 

of imperfect contact between the layers of a three-layer hollow sphere 
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on the natural frequencies of this sphere is studied. The first paragraph 

of the fourth chapter substantiates the conditions for non-ideality or 

imperfection of contacts, which remained unexplored until recently. 

The second paragraph gives a mathematical formulation of the 

problem and selects a solution method. The study of natural vibrations 

of a three-layer sphere is presented using exact three-dimensional 

equations and relations of elastodynamics, including equations of 

motion, elasticity relations and Cauchy formulas. 

                                

                     Fig. 4.1. Geometry of a three-layer sphere 

The following boundary conditions are set on the outer and inner front 

surfaces of the sphere: 

(1) 0rr
r a


=

= , (1)
0r

r a


=
= ,  (1) 0r

r a


=
= ,  (3) 0rr

r b


=
= , 

(3)
0r

r b


=
= , (3) 0,r

r b


=
=                    (4.1) 

We assume that the conditions of continuity of the force vector are 

satisfied at the interfaces between the layers, i.e. the following 

relations hold: 

1 1

(1) (2)
rr rr

r a h r a h
 

= − = −
= ,

1 1

(1) (2)
r r

r a h r a h
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= − = −
= ,  

1 1

(1) (2)
r r

r a h r a h
  

= − = −
= , 



42 

1 2 1 2
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rr rr

r a h h r a h h
 

= − − = − −
= ,   

1 2 1 2

(2) (3)
r r

r a h h r a h h
  

= − − = − −
= ,  

                                 
1 2 1 2

(2) (3)
r r

r a h h r a h h
  

= − − = − −
= .                                 (4.2) 

The contact condition regarding movement on the surfaces between 

layers is non-ideal, and this non-ideality is mathematically modeled as 

the following six equalities: 

1 1

(1) (2) (1)1 1

1
r r rr

r a h r a h

F h
u u 

= − = −
− = ,    

1 1

(1) (2) (1)2 1

1
r

r a h r a h

F h
u u  

= − = −
− = ,…, 

1 2 1 2

(2) (3) (2)6 2

2
r

r a h h r a h h

F h
u u  

= − − = − −
− =              (4.3) 

Let us introduce the following notations: (12)h  ( 
(23)h ) - thickness of the 

adhesive transition layer between main layers 1 and 2 (between main 

layers 2 and 3), (12)K  ( (23)K ) and (12)  ( (23) ) moduli of volumetric 

and shear elasticity of the material of the transition layer between main 

layers 1 and 2 (between main layers 2 and 3). For real cases, we must 

proceed from the assumption of anisotropy of the rigidity properties 

of the transition layer material and, in accordance with this 

assumption, write: 

(12)
1

1 (12)
1 r

h
F

h E
=

 , 
(23)

2
4 (23)

2 r

h
F

h E
=

 , 
(12)

1
2 3 (12)

1 r

h
F F

h


= =



                                            

                         
(23)

2
5 6 (23)

2 r

h
F F

h


= =



                                        (4.4) 

Formula (4.4) was introduced based on physical and mechanical 

considerations and generalizations of existing formulas. Moreover, in 

(4.4) through constants 
(12)
rE  and 

(12)
r  (

(23)
rE  and 

(23)
r ) the values 

of the rigidity of the material of the transition layer in the radial and 
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azimuthal directions are indicated. Instead, formulas (4.4) can also be 

taken as a modified form of the Winkler and Pasternak model for beds 

with finite thickness. The solution to the elastodynamics equations, as 

in the two previous chapters of the dissertation, is constructed through 

the Helmholtz representation, in which the potentials ( )( , , , )k r t   , 

( )( , , , )k r t    and ( )( , , , )k r t   satisfy the wave equations, the 

solutions of which are selected in the following form 

( ) ( ) ( ) ( ) ( )( , , , ) ( ) ( ) (cos )cosk k k k k m i t
n n nr t A j r B y r P m e        = +

 
 

( ) ( ) ( ) ( ) ( )( , , , ) ( ) ( ) (cos )sink k k k k m i t
n n nr t C j r D y r P m e        = +

 
              

( ) ( ) ( ) ( ) ( )( , , , ) ( ) ( ) (cos )cosk k k k k m i t
n n nr t E j r F y r P m e        = +

 

In the formulas 
( )( )
1
kk c = , 

( )( )
2
kk c =

,  
( ) ( )

,...,
k k

A F −  

unknown constants, ω are the frequency of harmonic oscillations of 

the sphere, 
1

kс and 
2

kс  are the velocities of longitudinal and transverse 

waves.  

So, equating to zero the determinant of the matrix of coefficients of 

the system of equations related to the unknowns 
( )kA , 

( )kB , 
( )kE and  

( )kF ,as well as to the unknowns ( )kC and 
( )kD   separately, we obtain 

the frequency equation for the spheroidal and torsional modes of 

vibration, which can be formally represented in the following forms: 

( )1 2 1 2 6det ( , ,..., ) 0q q F F F = , 1 2; 1,2,...,12=q q    ( 4.5)   

( )1 2 2 3 5 6det ( , , , ) 0p p F F F F = , 1 2; 1,2,...,6=p p
 
(4.6) 

Note that the explicit form of the expression 
1 2q q and 

1 2p p can be 

easily established from the formula for displacements and stresses, and 

functions included in the expressions, as well as from the boundary 

(4.1) and contact (4.2) and (4.3) conditions. 
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  As a result of numerical analysis, it is established that the 

imperfection of contact relationships between the layers of the sphere 

leads to a significant decrease in the values of natural frequencies. To 

select the values of the ratios of elastic moduli and material densities 

of the layers of the sphere, it is based on the corresponding selections 

of the test problem, as well as on well-known mechanical engineering 

considerations. Considering the significance of the influence of non-

ideal contact conditions on the value of natural frequencies of a three-

layer sphere and the possible applications of the obtained results not 

only in the dynamics of layered materials, but also in geomechanics, 

there was a need to continue research for high harmonics of vibrations 

and for subsequent roots of frequency equations. 

                                                                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Influence of non-ideal contact conditions between the upper 

and middle layers for (2) (1)/E E  different values of spheroidal 

frequencies of natural oscillations    12 21 22 0F F F= = =  



45 

а) 

 

b) 

 

Fig.4.3. The influence of imperfect contact conditions of various 

options between layers on the frequencies Ω of oscillations of a 

spheroidal shape for harmonics 3n =                  

In the fifth paragraph of the fourth chapter, a mathematical model of 

the wave motion of a hydroelastic system is constructed - a cylindrical 

shell and a compressible viscous liquid with spherical gas bubbles; 

wave processes in shells with liquid interacting with each other are 

studied. This interaction is often highly dependent on the deformation 

of the shell itself. Within the accepted assumption that small 

disturbances have formed in the two-phase liquid, we write the 

linearized Navier–Stokes equation, the continuity equation of the 

medium in Euler coordinates. 

The linearized equation for pressure in a Newtonian fluid is obtained 

in the form: 

         

2
2

2 2 2

0

1 4

3f f

p p
p

a t a t





  
=  + 

   
.                 (4.7) 

For thin shells, the validity of the Kirchhoff–Love hypothesis is 

accepted. The axisymmetric case of shell motion in the Lagrangian 

coordinate system is considered and the known equations of shell 

motion are written. It should be noted that in a cylindrical shell filled 
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with a two-phase single-velocity liquid-gas medium, which is initially 

at rest, according to the coordinate transformation formula, the Euler 

and Lagrange coordinates coincide. To obtain a closed mathematical 

system of hydroelasticity equations, boundary and contact conditions 

of the problem are drawn up, which are a mathematical model of a 

steady-state wave process. For unknown functions of the system of 

hydroelasticity equations , , ,r x rp u u w  and xw  dynamic and 

kinematic contact conditions are compiled.      

 

,2
3

2
2/













+−−−=−=

−= r

u
udivpp r

hRrrrt 


 

                    

.
2/













+




−=−=

−= r

u

r

u
q rx

hRrrx                               (4.8)  

The conditions for kinematic contact on this surface will also be 

satisfied: 

            

,
2/

2/
hRr

r

hRrr
t

w
u

−=
−= 


=

       

      .
2/

2/
hRr

x

hRrx
t

w
u

−=
−= 


=     (4.9)                                     

We write the solution to the linearized wave equation (4.7) of a viscous 

liquid–gas medium as follows: 

( ) ( ) *Re
i k x t

p p r e
+

=                       (4.10) 

Having written the last dependence in equation (4.7) and performed 

simple mathematical transformations, the result is the Bessel equation, 

the solution of which, taking into account the limited pressure, is 

    
( )*

0 0p p J r=
        

                    (4.11) 

After setting the components of the velocity vector of a two-phase 

fluid and , taken in the same mode as for pressure, in the 

linearized equation of motion, the expressions are obtained: 

( )
( )

( )
0 2

*

1 12 2

1
3 f f

r

p i
a

u A J r J r

 



 

  

 
+  

 = −
−

   

ru xu
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       )(
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)( 022
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Here 








+−=






f
ik 22 - complex number. 

In the obtained solutions, the quantities, 
0p , A  and B are unknown 

numbers, which are determined from the contact conditions of the 

problem by solving the differential equations of shell motion. 

Additionally, we get more conditions 

                                                  
,A

k

i
B


−=

     
thus eliminating one of the four remaining unknowns. After the 

transition to dimensionless quantities, the resulting expressions for 

pressure and fluid velocity will be: 
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The shell equation in dimensionless form will look like this: 
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                  (4.12) 

We will look for a solution in the form: 

             
( )* ti K x t

r rw w e
+

= ( )* ti K x t

x xw w e
+

=
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Contact conditions for tangential and normal pressures in 

dimensionless form: 

               
,)(
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Substituting the formulas for displacement and pressure into equation 

(4.12) and solving for *

rw  and *

xw we obtain 

      

( )( )
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,
2/12/1

,
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        (4.13)                 

The conditions of kinematic and dynamic contact (4.8) form a system 

consisting of two complex linear homogeneous algebraic equations. 

                                           .0

,0

02221

01211

=+

=+

pcAc

pcAc

                              (4.14)    

 

The unknows A  and 0p  which are complex quantities, must be equal 

to a nontrivial solution to equation (4.14). It is known that the the 

determinant of the coefficient matrix is equal to zero, gives a nontrivial 

solution to the equations of the system/  

The result is a dispersion relation. Solving the dispersion equation 

leads to the determination of a constant unknown complex wave 

number K . The coefficients of the equation K  consist of a constant 

wave number and dimensional physical, mechanical, geometric, 

kinematic and dynamic parameters of the fluid and shell. 

In the case of a process that is stationary in time t and decaying along 

the coordinate x , the real frequency is known  , and the required one 

is the complex wave number K . In contrast to natural oscillations, we 

will agree to call these oscillations steady-state oscillations.  
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In the cases of 0iK  , 0RK   and 0iK  , 0RK   the phases of 

oscillations and the excitation amplitude in the direction of 

propagation of the speed of phase change correspond to the mode of 

damped oscillations.  0L → , 
RK →  short waves and  0L → , 

RK →  - long waves characterize the limiting state of the process. 

The solution to the dispersion equation, which is a complex algebraic 

equation, was obtained by a numerical method using a special 

MATLAB program on a personal computer (PC).  

 

CONCLUSIONS 

   

1.1. For the three-dimensional theory of deformable solids, a mixed 

variational type principle has been developed to determine the stress-

strain state of inhomogeneous anisotropic elastoplastic bodies during 

creep under the action of neutron fluxes at finite deformations, taking 

into account damageability and diffusion. The work presents a 

modification of the established principle for the case of a composite 

material and for structures with nanotubes, when in a heterogeneous 

medium various phase inclusions are clearly expressed. 

2.1-A discrete-analytical method is proposed for solving dynamic 

problems of a hollow sphere with inhomogeneous initial stresses, 

when the initial stresses are symmetrical relative to the center of the 

sphere and depend only on the spherical radial coordinate. The essence 

of the developed method is to divide the spherical layer into a certain 

number of corresponding spherical sublayers, in each of which the 

initial stresses are uniform, and try to find an analytical solution for 

the field equations inside each sublayer separately. 

   3.1- numerical results on the influence of the existence of fluid and 

the influence of inhomogeneous initial stresses on the natural 

vibrations of the hydroelastic system under consideration are 

presented and discussed. 

4.1. Within the framework of the model of a piecewise homogeneous 

body using exact three-dimensional equations and relations of 

elastodynamics, the influence of imperfect contact between the layers 

of a three-layer hollow sphere on the natural frequencies of this sphere 
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was studied. The case is considered when non-ideal contact 

relationships relate only to displacements. Numerical results related to 

the spheroidal and torsional modes of vibration are separately 

considered, and it is established that the non-ideal contact 

relationships between the layers of the sphere lead to a significant 

decrease in the values of natural frequencies. 

4.2. It has been shown that the dynamic properties of a hydroelastic 

system in technological and natural processes and living organisms 

depend on the interaction of solid deformable shells and liquid with 

bubbles. For shells containing liquid with spherical bubbles, the 

effects of viscosity on the dynamic characteristics of wave propagation 

are assessed. The shape and frequency of oscillations generated in a 

dynamic system, shell–liquid, are determined. 

Fundamental iteration method was used to calculate eigenvalues and 

eigenfunctions to represent field quantities using MATLAB software. 
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