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INTRODUCTION
Relevance of the topic and degree of development

Since the middle of the last century, directions have emerged
and are now widely developing, establishing a close connection
between the mechanics of materials and structure with other areas of
physics, thanks to which the physical questions of the deformability of
continuous media and the strength of solids have received important
development. The first works on the mechanical theory of creep and
the problem of buckling and loss and stability of thin-walled structural
elements belong to N.M. Belyaev (1943), N. Hoff (1951), Yu. N.
Rabotnov (1957,1966), L. M. Kachanov (1960), N.N.Malinin (1959 ),
S.A. Shesterikov(1957,1963), A.S. Volmir (1962), 1.G. Teregulov
(1962,1966), V.I. Rozemblyum (1954), A.M. Lokoshenko (2008),
L.M. Kurshin ( 1961, 1963), G.V. Ivanov (1961,1963) and their
followers. In our republic, since 1970, problems of creep of metals and
hereditarily elastic media, as well as issues of buckling and
determination of the load-bearing capacity of structural elements and
solids bodies, devoted to the study of M.F. Mehdiev, R.Yu.
Amenzadeh, S.D. Akbarov, M.Kh. Ilyasov, A.N. Alizade, L.H.
Talybly, F.S. Latifov, A.D. Zamanov, G.G. Aliev, M.B. Akhundov, L.F.
Fatullaeva and others.

Spatial dynamic problems of a solid deformable body,
hydrodynamics, elastodynamics and hydroelasticity in general, this is
one of the most complex classes of problems in continuum mechanics.
However, the mathematical difficulties of solving boundary value
problems in a three-dimensional formulation often led to the need to
involve various hypotheses and simplifying assumptions. This
significantly simplifies the formulation and solution of problems, but
always imposes significant restrictions on the scope of applicability of
the solutions obtained.

These remarkable achievements in the field of solving mathematical
problems related to fundamental issues of continuum mechanics and
engineering are still relevant today, and many of these results have
been applied to the solution of seismic problems. Studies of natural
vibrations of a multilayer hollow sphere and a multilayer hollow
cylinder within the framework of the three-dimensional linearized
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theory of deformable bodies with initial inhomogeneous stresses and
the theory of elastic waves were carried out by S.D. Akbarov and A.N.
Guz.

For fundamental research, the relevance of solving spatial
problems is determined by the fact that the stress-strain state is almost
always three-dimensional in nature. The relevance of this kind of
large-scale research for engineering applications is determined by the
fact that in problems of the strength of materials and the load-bearing
capacity of structural elements, data are mainly used on experimental
values of the stress-strain state (SSS) in local areas (in zones of sharp
changes in the geometric shape of structural elements, in places
applications of uneven load, etc.). Obtaining this kind of reliable and
complete information is associated with the use of methods and
specific results of spatial tasks.

Object and subject of research.

Objects that are considered in this dissertation and for which
the very formulation of the problem of determining the bearing
capacity has practical meaning, there will be structural elements - rods,
plates and shells. When presenting general issues of stability under
creep with the construction of variational principles, as well as for
studying problems of dynamics, the main objects are solid deformable
elastic and inelastic bodies with finite and infinite geometric
dimensions. Equations for more specific objects, as is known, can
always be obtained from the general equations of the theory of
elasticity, plasticity, and creep, introducing the corresponding
kinematic and static hypotheses and applying variational principles.
Deformable solids, in the form of hollow multilayer spheres and
hollow multilayer cylinders and structural elements - multilayer rods
and multilayer shells (ring) form a piecewise homogeneous elastic and
inelastic medium, composed of a finite number of homogeneous parts
different in shape and physical properties, connected into one solid
body in one way or another. The connection of dissimilar parts can be
either natural or artificial. The latter always serve the purpose of
strengthening the load-bearing capacity of structures and are often
used in engineering practice.



In the case of connecting a solid body from dissimilar parts
with other elastic characteristics, such as composites and
nanostructures, solving the problem becomes much more difficult.

In the first, second and third chapters of the dissertation, it is
additionally assumed that the contacting surfaces of the bodies do not
lag each other due to deformation, i.e., during deformation, the
elements contact each other along their entire common surface.

The work examines some static and dynamic problems in the
mechanics of structures and deformable solids, determines their stress-
strain state and evaluates their load-bearing capacities.

The subject of the dissertation research is: 1. Static problem -
constructing a variational principle for solid anisotropic bodies and
structural elements during creep, considering the influence of external
physio-chemical fields, mechanical influences, and damageability of
the material. 2. Dynamic problem - determination of the main wave
dynamic characteristics for hollow multilayer spherical and cylindrical
bodies containing compressible liquids inside during free vibrations,
considering various boundary and contact conditions.

Goal of the work

The purpose of the dissertation work is to create mathematical
models of certain classes of static and dynamic problems in the
mechanics of a deformable solid and structural elements, determine
their load-bearing capacity considering the influence of surrounding
external fields and obtain accurate and approximate analytical
solutions in a three-dimensional formulation.

Research methods

Extended variational principles were implemented in the works of
A.J.Wang, W.Prager [1]%, J.L. Sanders, G.D. Mac Comb, F.R. Shlechte
[2]?, K.Washizu [3]® and others, where variational principles were
formed for the boundary value problem, where it is assumed that

! Wang A.J. Termal and creep effects in work-hardening elastic-plastic solids / W. Prager //
Journal of the Aeronautical Sciences, —1954. V.21. Ne5, —p.343-344.
2 Sanders J. L. A variational theorem for Creep with applications to plates and columns / H.
G. McComb, F.R. Schlechte // NASA Report, —1957. —p.134.
3 Washizy K. Variational principles in continuum mechanics // University of Washington
College of Engeneering.Department of Aeronauticai Engineering, —1962.Report 62-2
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stresses and displacements are known now of time. Knowing the rate
of change of surface forces, the rate of change of displacements on the
surface, the rate of change of mass forces and the relationship between
the rates of stress and strain, we find the rate of stress and displacement
occurring in the body. In this case, the creep strain rate can be
considered as the initial strain rate. As is known, in quasi-static
processes, given mass forces, surface forces and displacements change
so slowly over time that the inertial terms in the equations of motion
are neglected. Thus, in a quasi-static problem, considering the
distributions of stresses and displacements in the body at the initial
moment of time as given, we will determine the time derivatives of
stresses and displacements; here time will play the role of a parameter.

Within the framework of the three-dimensional linearized
theory of deformable bodies with inhomogeneous initial stresses and
the theory of elastic waves, S.D. Akbarov et al. developed a discrete-
analytical method, which is used to study the natural vibrations of a
solid hollow sphere and a cylinder.

Natural vibrations of a solid hollow sphere and a multilayer
hollow sphere and a multilayer hollow cylinder containing
compressible inviscid fluids, within the framework of three-
dimensional linearized theory of deformable bodies with initial
inhomogeneous stresses, hydrodynamics, as well as the theory of ideal
elastic waves and within the framework of exact equations of the
theory of elasticity with discontinuous kinematics contact conditions
were studied by the Fourier method.

Main provisions submitted for defence:

- a constructed mixed variational principle for creep problems,
taking into account the influence of external physic-chemical fields on
the bearing capacities of solids and structural elements in a geometric
linear and nonlinear formulation.

-modified mixed variational principle for composite
materials, considering the damageability of materials.

- an analytical solution obtained by a discrete analytical
method for problems of the dynamics of a sphere with non-uniform
initial stresses in a three-dimensional formulation.



- analytical solution to the problem of the propagation of
elastic waves in a non-uniformly prestressed hollow multilayer sphere
and a hollow multilayer cylinder filled with a compressible fluid of
free vibrations.

-solutions to the problem of establishing the influence of initial
non-uniform stresses on the dynamic characteristics of a multilayer
hollow sphere and a hollow cylinder filled with a compressible ideal
fluid.

-solution for determining the dynamic characteristics of a
layered hollow sphere in the presence of non-ideal contact conditions.

-solution of an axisymmetric problem of the propagation of
elastic waves in a hydroelastic system - a cylindrical shell and a
viscous compressible fluid with spherical gas bubbles.

Scientific novelty of the research

The scientific novelty of the work is as follows:

- a mixed variational principle was formulated and
proven to determine the bearing capacity of elastoplastic deformable
anisotropic solids and structural elements made of structural metals
based on the kinetic theory of Yu.N. Rabotnov, who are under the
influence of physical and chemical external environments.

For dynamic problems of natural vibrations of an
1sotropic elastic sphere with inhomogeneous initial stresses within the
framework of a piecewise homogeneous body, using three-
dimensional linearized equations and relations of elastodynamics, a
discrete analytical method is proposed, and analytical solutions are
obtained.

The solution to the corresponding equations of motion
of a three-layer hollow sphere containing a stationary compressible
inviscid fluid and a multilayer hollow cylinder, inside of which a
compressible inviscid fluid flows at a constant longitudinal velocity,
having initial non-uniform electrostatic stresses arising under the
action of radial compression forces uniformly distributed on the outer
and inner surfaces, are presented through Helmholtz potentials.

Analytical solutions to the problem of studying the influence
of inhomogeneous initial stresses on dynamic stresses have been
obtained.



reactions of a hollow three-layer sphere with non-ideal
contacts between layers, using exact three-dimensional equations and
relations of elastodynamics.

Theoretical and practical significance of the study

The theoretical value of the dissertation includes:

-variation principle for determining the load-bearing
capacity of a three-dimensional body and structural element during
creep, taking into account the influence of external physical and
chemical fields and damage;

-analytical solutions obtained by the discrete analytical
method for problems of the dynamics of a sphere with inhomogeneous
initial stresses based on the linearization of the three-dimensional
theory of stability of elastic bodies;

-analytical solutions to problems on the propagation of elastic
waves in a multilayer hollow sphere and a hollow cylinder filled with
liquid with non-uniform initial stresses, obtained in a three-
dimensional formulation;

- determination of the dynamic characteristics of a layered
hollow sphere in the presence of non-ideal contact conditions;

-study of the problem of the propagation of elastic waves in a
hydroelastic system - a cylindrical shell and a viscous compressible
fluid with spherical gas bubbles.

The results of the analysis of the causes of man-made
disasters and accidents of critical structures and structures show that
destruction and disasters could have been avoided if the necessary
means of non-destructive testing and diagnostics of the condition of
materials and the structure were available. In applied research and
practical work, methods are needed for mathematical modelling of the
processes of loss of bearing capacity of a material and establishing the
expected residual life of structures, which is the practical significance
of the results obtained in the work.

Reliability of research results

The reliability of the results obtained is ensured by the
mathematical correctness of the problems posed, obtaining solutions
to the problems using rigorous analytical methods, the results of
numerical calculations, and a comparison of the final analytical and
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numerical results in particular cases with those known in the literature.
In the calculations, MATHLAB is used and uses a modern licensed
package for mathematical calculations and the corresponding graphs
are built. The results obtained are confirmed cases with their
coincidences with the known results of other authors.
Approbation of work
The main results of the dissertation work were reported and

discussed at the following conferences:
- PecnyOnukanckas koHpepeHIMsS «AKTyallbHble MpPOOIeMbI
TEOPETUYECKONM M MPHUKIAJIHOM Maremartuku» mnocBamEénHoe 100
netuto akanemuka M. Pacynosa, [lleku, 2016;
- MexmyHapoHas HayqHO-TeXHUYeCKast KOH(EPCHIIHS
«AKTyanbHble TPOOIEMBI IPUKIATHON MaTeMaTUKU, HH(OOPMATHKU U
MeXaHuKn», Boponex, 2017;
- PecnyOnukanckas koH(pepeHIMS «AKTyallbHble MpPOOIEMbI
MaTeMaTUKU U MexaHukH noceaménHoe 100 netuto wi. kopp. HAHA,
npodeccopa I'. T. Axmenosa, baky, 2017;
- XVII International Conference «Dynamical System Modelling and
Stability Investigation», Ukraine, Kiev, 2017;
- International Conference Geoinformatics, Ukraine, Kiev, 2018;
- International Conference «Modern problem mechanics and
mathematics» dedicated to the 90™ anniversary of academician A. Kh.
Mirzajanzade, Baku, 2018;
- Pecnybnukanckas HayuHas KOH(epeHIs « AKTyaJbHbIe IPOOIEMbI
MaTeMaTUKd M MEXaHUKH» TOCBIIIEHHOE 95 JEeTHOMY IOOMIIEIO
O6menarnmonanpHoro Jlugepa AzepOaiimxkana I. A. Anuea, 2018;
8t Internasional Conference on «Appleid Analysis and Mathematical
Modelingy, Istanbul Gelisim University, 2019;
- PecnnyOnukanckas HaygHasi KOH(pepeHIs «AKTyallbHbBIE TTPOOIEMBI
MaTeMaTUKA W MEXaHWKW» TMOCBIMIEHHOE 96 JeTHOMY OUIIeto
Oo6menarnmonansHoro Jluaepa AzepOaimkana . A. Anuea, 2019;
- 21 Ulusal Mekanik Kongresi TUMTMK, Tiirkiye, Nigde, 2019;

8" International Euroasian Conference on mathematical sciences
and applications, Baku, 2019;
- PecniyOnukanckass HayuHas KOH(eEpeHIUs «AKTyalbHbIS
npoOeMbl MAaTeMAaTUKH W MEXaHUKH» TMOCBSAIIEHHOE 97 neTHoMy
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1o6uneto O6menannonansHoro Jlngepa AzepOaitmkana I. A. Anmesa,
2020;

- 7™ International Conference on Control and Optimization with
industrial applications, Baku, 2020;

- PecnyOnukanckass HayuHas KOH(epeHIHs «AKTyalbHbIC
npoOJieMbl MaTeMaTUKd M MEXaHWKW» IOCBALIEHHOE 98 neTHoMy
100meto O6menannonansHoro Jlngepa AzepOaiimkana I. A. Anmesa,
2021;

- PecnyOnukaHckas HaydHas KOH(pepeHIUs « AKTyalbHbIE TPOOIEMBbI
MaTeMaTUKA M MEXaHHKH» TOCBIIIEHHOE 99 JeTHOMY IOOWIICIO
Oo6menanmonanpHoro Jluaepa AzepOaiimkana I. A. AnueBa, 2022;

- International Conference «Modern Problem of Mathematics and
Mechanics» devoled to the 110" anniversary of academician Ibrahim
Ibrahimov, Baku, 2022;

- 8™ International Conference on Control and Optimization with
industrial applications, Baku, 2022;

- «Funksiyalar nozoriyyssi, funksional analiz vo onlarin totbiqlori»
movzusunda Respublika konfransi, Baki, 2022;

- Ha Hayunbix cemmuHapax MexaHHKO-MaTeMaTHUeCKOTo (haKyibreTa
BI'Y mapt 2021, HosiOps 2022, dpespans 2023.

- Ha pacmmpennbix cemunapax kageapsl TeopeTnueckas MEXaHUKa U
MexaHHuKa crutomHo# cpenst 2020,2021,2022, 2023.

Organization of work execution

The dissertation work was completed at the Department of
Theoretical Mechanics and Continuum Mechanics of Baku State
University.
Scope and structure of the dissertation

Structure and volume of the dissertation (in characters,
indicating the volume of each structural unit separately). The total
volume of the dissertation work is 421,229 characters (title page - 758
characters, table of contents - 2758 characters, introduction - 52,735
characters, first chapter - 118,533 characters, second chapter - 39,775
characters, third chapter - 66,224 characters, fourth chapter - 140,446
characters). The list of used literature consists of 204 titles.
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CONTENT OF THE DISSERTATION

The introduction substantiates the relevance of the problem
considered in the work, formulates the purpose of the work and the
objectives of the research, shows the scientific novelty, theoretical and
practical significance of the results obtained.

The first chapter examines the influence of external fields and
influences on the load-bearing capacities of structural elements and
solids during creep. For mathematical modelling and solution, direct
methods of mathematical analysis are used, a mixed-type variational
method is developed for three-dimensional theory, and the Rayleigh-
Ritz method is used to determine the stress-strain state of
inhomogeneous anisotropic elastoplastic bodies under the action of a
neutron flux at small and terminal deformations.

In paragraph 1.1, a variational method of a mixed type of
plasticity theory is formed for inhomogeneous and composite bodies
under irradiation, with independent variation of the fields of
displacement speeds and stresses. It is assumed that the physical and
mechanical characteristics of the medium depend on the radiation
dose. A modification of this variational theorem is given for the case
of a composite material, when in a heterogeneous medium different
phases (inclusions) are clearly expressed.

Note that the change in volumetric deformation during neutron
irradiation occurs quite slowly, because of which, when assessing the
stress-strain state, dynamic effects can be neglected, and the duration
of irradiation in time t can be considered as a parameter. Then, with a
constant irradiation intensity, as a parameter characterizing the

formation process, along with time, 0 the irradiation dose can be
taken, determined by the formula d =nvt, where n (1/cM’) is the

number of neutrons per unit volume of flow, and is the average flow

velocity (d the unit of measurement is neutron(1/cm?)) In this regard,
the dot above the values will mean differentiation with respect to . If

4 (1 . . . .
we now accept that ei(j) the strain rate satisfies an elastic-plastic law

such as flow theory, and also that 6 both mechanical characteristics
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. . . . K
and volumetric expansion are functions of coordinates X~ and

radiation dose 0 , then taking the rule of summation over repeating
indices, we can write

<) _ k km l* [z 19

&; _{Cijkm(x ,d)a }(l J,k,m_1,3), (1.1)
e =0(xk,d . (1.2)

Let a body of volume Vv be given in three-dimensional Euclidean

space, bounded by a sufficiently smooth surface S . On some part of
it, only O, the components of the displacement vector are specified

S, > and on the remaining part S_ - the loads Tk, and S=§, US_

Let us introduce the functionality

J= J{Ge— C. o' -C. o's! —Hé‘a”}dV—

- [T uidS—jT‘(ui — 0, )dS. (1.3)
S, S,

When writing functional (1.8), the starting point, on the one hand, was
the variational principle of Sanders, McComb and Schlechte in the
theory of creep, and on the other hand, its modification for the case of
elastoplasticity. Section 1.2 provides a variational method for solving
the problem of the limit state of a multilayer rigidly reinforced
nonlinear-elastic rod under creep with a modification of the mixed
variational principle for the case of heterogeneous media.

Within the framework of geometrically nonlinear theory, for a
nonlinear-elastic anisotropic material from physical laws
el = f,(c™) (1.4)

we get the final form of the functional
T
! :z‘[{ajgij +§O-Jviukviuk _E(gij +2pij)gj}dv -
m Vm

~ [T(u, —u? jgs - [T u,ds
S S,

(1.5)
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It is assumed that the rod, rectangular in length | and thickness, is
composed of alternating layers of different thicknesses 2h, divided
parallel to its side faces S. We denote the thickness of each layer by 0,

, then 9, +0, +...+0, =2h . Based on a physical hypothesis, we accept
a theory in which the creep rate is described with the dependence:
p=A,o", a <z<a,, [k=01..(s-1)] . (1.6)
Let us define the instantaneous deformation for the package as
a whole in the form of a single equality

e' = 1+( g j a, <z<a,, (1.7)
Ek+l O-k+1

Here is N—the nonlinearity index, which takes even values
(2,4.,6,...), E., and o, —the elastic modulus and proportionality limit

of the k— layer, respectively. In (1.11) and (1.12) the notation is
introduced

Y5, (5-0) (1.13)

Let us now consider the stability of the selected rod under
creep, centrally compressed by force T =const. Assuming that one
transverse dimension of the rod is equal to unity, considering the
nonlinearity of only the deflection and relation (1.7), we write the
functional used as

| s-1 ak+l . n
J= J.J.(Gg+ oW’ j 1+(n+1) o dxdz —
ok 0 a, Ok+1
| s—181
—IZ J. A 160 M dxdz.
0k=0 ay

(1.9)

Assuming that the stress distribution along the thickness is

linear and that the hypothesis of flat sections is fulfilled, we formulate

boundary conditions corresponding to the case of rigid pinching of
both ends.
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For subsequent application of the Rayleigh-Ritz method when
calculating the critical buckling time, it is necessary to specify the
bending and moment shapes. As the first eigenfunctions satisfying the
boundary conditions, we have

w(x,t) = a(t)sin Zsinz(1 - ),
| | (1.10)

M (x,t) = b(T)coslﬁcosz(l— If)

The stationarity of the functional (1.9) leads to a system of two
ordinary differential equations, after which we obtain:

2 g2 n m
dz’/dn:(—”eg +a)¢2+a)”+1zK;ﬂ‘:zni]/(a)”ﬂzKrf]¢j°+l77jj, (1.11)
j=0

i=0

Where n=alhand 7= AiE{n t are the independent
variables, and K, ¢, ¢!,,¢},,,&,0 dimensionless quantities.
Equation (1.11) must be supplemented with the initial condition

n(0)=n", (1.12)
in which 7" —the value of the deflection that occurs
immediately after the application of a load @.

Let , s=3, E,=E, 6,=09,, A=A, o, =0y, denoted by
p=AJA, a=E,/E, f=8,/5, y=of/o?, i-EJop. and  considering
4=3-10°, £=5-10",that Tables 1-3 give numerical values depending
ON (5 =0,25,8=4), y (=025 p=4) »With ;= 10" andw=311-10"°
. This choice eliminates instantaneous buckling of the rod, because
with the accepted system parameters it is equal to 7,3-107°
Table 1.1. Dependence of deflection value _ ,,v on parameter &

a 0,25 1,25 2,25 3,25
n' 0,118 0,120 0,122 0,125
Table 1.2. Dependence of deflection value — 77" on parameter j
4 0,25 1,25 2,25 3,25
n' 0,118 0,128 0,139 0,148
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Table 1.3. Dependence of deflection value — 7" on parameter 3
B 0,5 1,5 2,5 35

n' 0,145 0,138 0,131 0,122
In Figure 1.1. The dependences of the critical time on the values of

Tkp , o, ., ﬂ and , are given. The case of a homogeneous rod

corresponds to the values when 4 =5 =p=,=1. Then 1° =0,129
and at w=311-10", (w,, =6,72-10°) 7, =4,16-10".

Section 1.3 presents a study of buckling of a multilayer thin-walled
shell during creep under the influence of a distributed load. The task
of determining the stress-strain state (SSS) in structural elements
during creep, considering geometric nonlinearity, made of composites
and various nonlinear elastic materials, and interconnected through
full adhesion, is mathematically complex. The problem is doubly
nonlinear, and it may be necessary to study solutions to nonlinear
boundary value problems with discontinuous coefficients. To solve the
problem using the variational method in combination with the
approximate Ritz method, we define the approximating functions for
the deflection and bending moment in the form

w=a,(t)+alt)cosld, M =b(t)cosld (1.13)
Due to the law of plane sections, the total deformation will be:
2 2
g:ﬂ+i2(@j L Low, (1.14)
R R°\ o6 R 06

From the stationary condition of the functional, we obtain a
differential equation relating the dimensionless time to the
dimensionless deflection, the parameter of which is the dimensionless
load .

9C 9 n+1 n+ n+: . i i i
E ~ — Cll2 + TZ§3¢20) + (2n+1 )é/ ‘o 1§3 Cnci+277 Pia (1 15)
d N 3 m+ m . j j j
n 2m+1 é/ 2C() §3lcmjcj+177]¢j+l

The differential equation with the initial condition for the deflection
will constitute the Cauchy problem.
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We assume that the acting compressive load q, uniformly distributed
over the surface, is less than the critical Euler force g, i.¢., J< d, -

In this case, the shell, because of instantancous elastic deformation
under load g, takes on a new position. This position must be stable,
otherwise stability for this structural element is lost within the limits
of elasticity, without the occurrence of creep deformation. Among the
kinematic possible positions of the shell, the unstable state
corresponds to the state within the limits of elasticity in which the

functional
2 1 (ow)
Jle.HangWa[%j }drde— (1.16)

R2”5—1 1 aK+1 o n 27
= [ o 1+(n+1)£ d j drdo+R [wdo
2 0 k:OE Oy 0

takes a stationary value. We will approximate the deflection and
bending moment in the same mode as for creep (1.13), but with
amplitudes depending on the load parameter.

w=a,(q)+a(q)cos¢®, M =b(q)cos¢e (1.17)
The phenomenon of loss of stability with buckling of the shell during
elasticity occurs when the load reaches a critical value and remains
unchanged. We differentiate stresses within the limits of elasticity in
relation to the monotonically changing load q, so that from the
condition of stationarity of the functional, the corresponding loss of
elastic stability with buckling, the following differential equation is
obtained in dimensionless quantities

Iz 9(n+1 n+3 __n+ 3 [N i
dw _ﬂ'lz + T§3¢2a)+ (2n+2 )é’ 30) 123 CnCiJr277 ¢|+2
- = i=0
d7 ~ 9r I G
g _743’7% + one2 g" sa)nzg CoCi?? $a + (2n+1 )gn 3a)nz3 CnCiio?l Bz
i=0 i=0

(1.18)

Suppose that in a three-layer shell the facing layers are made

of the same material, with the same thickness, then
E /E,, B =B, =5,0=c). To numerically implement the
solution to the problem with compiling a table and constructing
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characteristic graphs, we introduce the following dimensionless
quantitiesé =R/h,a=E /E,,=35,168,,y =0, los,u=B,/B,,

A=E, /o, with values £=20,4=2,y=0'/0}, A =3. Equation
(1.18) is solved numerically using the Runge-Kutta method, taking the
value for the initial dimensionless deviation 77, =0,1. From the

condition that the numerator equals zero, we obtain the value of the
critical load. The solution to the elastic problem will correspond to the
number

n(0)=0,1273. (1.19)

The Cauchy problem for equation (1.15) - (1.19) is also solved by the
Runge-Kutta method for various values of dimensionless parameters.
For values of the dimensionless critical time, corresponding to the
moment of loss of stability with buckling, we will have (at m=5):

n a=y=175u=2 a=y=u=1

2 T.r = 3.92 x 10* T.r = 3.42 x 104
4 T = 3.15 x 103 Tor = 2.6 X 103

6 Ter = 342 T = 300

In
paragraph 1.4, the variational principle is proven for determining the
bearing capacity of solids and structures during creep, considering the

effects and influence of external physicochemical fields. It is assumed
1

that instantaneous elastoplastic deformation 6‘5 ),

creep deformation
. . T 2 .
pij and deformation resulting from irradiation Eé ) occur in the

material, so that covariant the components of the total deformation will
be
— ~@ (2
& =¢&; t& + P (1.20)

However, the phenomenon of creep is accompanied by the process of
accumulation of damageability of the material and the generalized
theory formed by Yu.N. Rabotnov* in the form of the concept of the

* Pa6orunos 10.H. [Tonsyuects sneMenToB kKoHCTpyKuuii / M. Hayka, 1966. -752 c.
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equation of mechanical state represents an opportunity for their joint
description if damageability parameters are introduced as structural
parameters in the kinetic relationships of creep.

To model the processes of non-stationary corrosion, long-term
strength, and their relationships for a structurally stable material at a
given time, we can write:

pij = pij(aa/j’Taqy---an) (1'21)
During deformation, the structural parameters change
according to the following non-integrable equations:

dg, =a.dp, +b'do, +¢'dt+d'dT,(i=12,.,n) (1.22)

Here a' b/, ¢',d are functions of P;,0",T,tand q,,q,,.. qyalso of

rs?r

ij!
parameters, i.e. ¢' =¢'(p;,c”,T,t,0;,0,,..., qy) €tc.

Radiation training, according to experimental evidence, causes a
significant decrease in the ductility of steels and nickel alloys, but at
significant doses of radiation (up to 10?2 neutrons/cm2) they retain
the plasticity zone at normal and moderately elevated temperatures.
For the deformation rate we will have the utility

P = Py (Saﬂ,o'aﬂ,a), c) (1.23)
kinetic equation of diffusion considering corrosion of the environment
¢ =div(DVc) —kc (1.24)

kinetic equation of damage

w=p(c?,w,c) (1.25)
Here D=D(c”,m,C), k =constthe characteristic rate of a
chemical reaction, kc -is the rate of decomposition of chemical bonds
under the influence of an aggressive chemical environment.
Among the many effects caused by neutron irradiation, issues related
to volumetric expansion and changes in the physical and mechanical
properties of the body h occupy a special place. If the flux intensity
nv does not depend on time, then the total neutron flux
N =nvtexp x(z — h/2) neutron/cm2 will pass through a unit area of a
plate with thickness after time t. In the case when deformations and

[223-238]
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displacements are constrained for some reason, then internal forces
and stresses arise in the deforming body, and the components of the
deformation tensor change completely.

(1 k e — . :

&) = {Cijkm(x Ao G, jkm=13); £ = 0(x*,d)s,,
Finally, for the components of the total strain rate tensor we will have

é,=1{C,.o"f +p,+65,. (1.26)

Note that when d =0 we have 6 =0, and the covariant components
of the fourth-rank tensor C, for the anisotropic case are the physical

and mechanical characteristics of the material of the unirradiated body.
In metals and alloys, as well as in structures made from them, because
of irradiation at high temperatures, the processes of creep and
accumulation of damage are accelerated, depending on the type of
stress state. Neglecting dynamic effects, let us consider the
equilibrium of a deformable solid body Vv with a volume and limited

by a sufficiently smooth closed surface S . On some part of it S, only
the components of the displacement vector U; are specified, and on the
remaining part S_ - the load T ’. Since the variational theorem will
be used to solve problems of buckling of thin-walled structural
elements, finite strain relations and nonlinear equilibrium equations
are used here®. Then the geometrically nonlinear theory of equilibrium
of an elastoplastic body in a chemically active medium during creep

under the influence of a neutron flux will be described by means of the
following boundary value problem
vj {O-” (viuk + 5ik)}= 0, (k = 1’3)’ ‘éij = {Cijkmakm }. +pij+05ij )
26,=Vu +Vu+vu'vuy, T'=T' x*es, (1.27)

u =0, x“es,, C=div(DVc)-ke, @=¢p(c”, c).
Here T* =o'n (Vu*+5), S=S, US,.

> Amensazie 10.A. Teopus ynpyroctu / M. Beicinas mikona, 1976. — 272¢. [228-
231]
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In some variational principles, based on varying the tensors of the rates
of change of stress and strain, a more general assumption is made
about the law of elastic-plasticity for instantaneous deformation.

& ={c,,(x,d)o"}, x*eE,
Deformation during creep of solids and structural elements leads to a
change in shape, redistribution of stresses and loss of stability.
Therefore, creep is one of the important factors in structural analysis
at high temperatures.
In three-dimensional Euclidean space, we will consider the process of
creep in an elastoplastic anisotropic medium, which is subject to
irradiation by a neutron flux. In the case of a complex stress state, the
dependences of the stress components on the strain components in all
stages of deformation must be known. These dependencies are
established in the theories of plasticity and creep.

In this work, the load-bearing abilities of elements of a thin-
walled structure and solid bodies under creep under the influence of
external physical fields and influences are investigated. A mixed-type
variational principle for creep is formulated for geometrically
nonlinear problems of plastic bodies, considering damage, the
diffusion process, and irradiation with a neutron flux within the same
functional.

ijki

J= J‘{d"éij+%0"ViUijUk—%C 6’6" —C dk”‘a'”—(éi§2’+2pij)d”+/1m(%c£)2—cb(p)+

ijkm ijkm

+zc[%c2 —¢div(DVe) —kee T}V — [T'u,dS — [T'(u, —G)dS (1.28)

In the functional, the independent variable quantities O J,Ui,a) are
Ay = A, (07 &,5)and A, = A (o, &,,) weight functions, which are

selected depending on the type of interpolation functions to refine the
approximations. In order to overcome the difficulty of solving the
variational problem using direct methods, refusing to satisfy the
kinetic equations (1.24) and (1.25) exactly, we replace them with
approximate integral relations

[ 2L~ p(c™ py @) dV =0, [A[¢~div(DVe) +ke] dV ~0,
\Y c
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where functions of damageability and levels of concentration of an
aggressive environment are sought in the form

0= iak (t)‘//k(x,-); a,(0)=0;c= Zri:ck t)n, (xj); ¢, (0)=0;

1k (0)=0,dm (x)/ dx|X:0 =0 , which is a shifted initial-boundary

condition for the function (at turns into a second-order parabolic
differential equation with constant coefficients).

Thus, this creep problem is reduced to a system of differential
equations with a known system procedure, i.e. with an algorithm that
allows you to approach the mathematical solution of these problems.
Many different direct methods for constructing approximate solutions
are possible, as well as direct methods for qualitative analysis of the
existence and uniqueness of a solution or the derivation of a priori
estimates for this problem.

The statement is proven that the stationary conditions of the functional
(1.28) are equivalent to a system of equations and relations, which is
a mathematical model of the problem of determining the true stress-
strain state of an elastoplastic continuous medium irradiated by a
neutron flux with damage in physicochemical fields in the process of
creep at finite deformations.

Let us find the variation of the functional (1.28) in a curvilinear
coordinate system. Considering that the variation operator 6 acts on
the speed of quantities, then we obtain:

& = [{¢,06" + 65, + %a"‘viuka(vjuk) + %a”vjuka(viuk) -

e smser—te sisem -G oo — (69 + p,)56" + A, (& — @) S>+

2 ijkm 2 ijkm ijkm
+2,[¢ —div(DVc) —ke]ackdV — | T'ou,dS — [[(u -G)oT'1ds. (1.29)

This took into account the fact that, by definition, volumetric
deformation is a function of coordinates and irradiation dose, and the
rate of creep deformation in the general case depends on stress,

temperature, time and structural parameters, therefore 50 =0,
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M, =0,, and to satisfy the boundary conditions ST = 0,o0n S_ the

equalities dl; =0 on §, are accepted. , respectively. Since the tensor
C,;«q does not depend on speed, the following relations hold true:
5C, =0, &C, =0, 8 =C,55",

ijkm ijkm ikl

and, equality C, 686" =C, c'66™

From the symmetry of the stress tensor we obtain the equality of the
third and fourth terms in (1.29). Using the Gauss-Ostrogradsky
formula, taking into account the symmetries of the stress tensor and
carrying out several mathematical projections, we obtain a variation
of the functional, where the terms are collected at the same
independent variations:

83 = [{la; ~ (e + py + 05,1 66" -V [ " (8 +Vu") | o0, +
\
4, (@0 #) S+ Z,[¢ —div(DVc) —kelsehaV +
+[[o" (6 + v )n, -T*] su,ds - [ (u, -G, JoT*ds =0
S Su

Taking into account the main lemma of the calculus of variations and
formula (1.26), from the condition of vanishing, as the Euler equations
in a curvilinear coordinate system, we obtain a system of complete
relations for the boundary value problem (1.21).

Modified variational principle for a composite body.

It is known that the strength of real solids and structural elements is
several orders of magnitude less than the theoretical strength of an
ideal crystal lattice of structural metals, corresponding to the
simultaneous rupture of all intermolecular bonds, which is usually
associated with the existence of lattice defects. The strength of most
polymers for structural purposes does not exceed 100-150 MPa, and
Young's modulus of elasticity is 3—4 GPa. Further improvement of the
mechanical properties of polymers through the design of the chemical
structure of molecules is not promising, so we must look for other
ways to improve the elastic-strength characteristics of structural
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polymers, among which the transition from polymers to
nanocomposites is currently considered the most promising.

Let us now move on to the description of the composite material.
When formulating the contact boundary value problem, we assume
that the body V, consists of K elements. An element with a number

—Qq® (2)
=57 uUsS7,

that where is S the boundary of the volume that does not have

occupies a volume with a surface S, . We assume S,

common points with V¥, a is the boundary of the volume Sk(i) is

part of the common boundary of the body T Let forces be given
on the surface, S,S® and S displacements U‘® on the remaining

surface. Let us assume that the surfaces are sufficiently smooth.
The theory of composite media used is based on the following
premises:
- during the deformation process, the elements contact each other
along their entire common surface;

-deformations are finite (geometrically nonlinear);

- the conditions of complete adhesion are met on the contact surfaces.

Further, we will proceed from the fact that the materials of

different elements are different and their physical and mechanical
properties are described according to an elastoplastic law such as flow
theory. Then the geometrically nonlinear equilibrium theory is
described by the following boundary value problem:

v, {G(ijk)(ﬁia +Viu(cf<))}= 0 (@=13)  (1.30)

éij(k) = {Cijmn(k)o-(nl:r;} + Bijgo +0(k)5u’ (1.31)
¢ —div(Dve) —ke, @=p(0”,0,C).

26,0 =Vil,y +V U, +ViU, ViU (132

i(k) 17k)

Uiy = Uiy S (1.33)
a _Ta a _ a a
Tio T(k)’ S me T —G(k)nj(Viu +0, ) (1.34)
It is important to note here that in the most general case,
according to the general formulation of the problem
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©) ©) _ T“(O) VSes®,

_|(k) {UI(EJ?) vSe Sk(Li), and T a) {T a(00) kU

u$y  vSes®, VS eS

To the given equations (1.30) - (1.34), conjugation conditions

on S&. With complete adhesion between adjacent elements on the

ko ?

interface surface, we have continuity of displacements, where in
expanded form the absence of a jump in the corresponding quantities
has the form

Uiy =Urgys T =T (1.35)

Here, the “+” and “—" signs indicate the values of the functions
at the junction points when approaching them to the right and left of
the contact line.

As before, again select an arbitrary element with volume V, .
Following (1.28), we write the corresponding functional for this
volume:

1, 1 bm s e
. j _ = . ij . m . m . ij
Ji = .[{G(k) Eijy T za(k)Vlu(k)VJu(k)a ZCijkmO-(k) =0 CimGuy O

—(& 52)+ p”(k))o-("k)+ﬂ( @° a)go)+/1[ ¢? —c¢div(DVc) —kee]JdV —
IT(k) I(k)dS IT(k) (ul(k) |(k))dS

(1.36)

Here S,, and S, - are the sections of the boundary where

ku
displacements Ui(k) and forces T(ll) are considered known or given

by formulas (1.39) and (1.40). Now let’s move on to generalizing the
functional for the entire volume when the body is composed of K
elements. It is easy to see that in this case the surface integrals in (1.36)
cancel each other and the functional finally takes the form
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<ij _« km L km
¢'c" -Cy,0"0" -

o ij o 1 ij -m . 1
J :Z\}[{O‘Jé‘ij +§O'JViU Vjum _EC

ijkm
C(p. +65.)6" + 4 (L — i) A[E¢ - ediv(DVE) —kee] bV -
ij ij () 2 (3 2

~[T'(u, -G )dS - [Td,dS.

S

The second chapter, using the discrete analytical method proposed
by S.D. Akbarov® and co-authors, provides solutions to the problem of
the dynamics of a hollow sphere with inhomogeneous initial stresses,
and it consists of five paragraphs.

Paragraph 2.1 is devoted to the results of important studies over the
past period and showing the state of the issue, highlighting the purpose
of the study, with the justification of the influence of non-uniform
initial stresses on the dynamic response of layered hollow and solid
spheres. In Section 2.2, the problem of the dynamics of a hollow
sphere with non-uniform initial stresses is formulated.

® Akbarov S.D. Dynamics of pre-strained bi-material elastic systems:
linearized three-dimensional approach / Springer-Heidelberg. New York,
2015. P-1004 [15-19]

A hollow sphere with an inner radius b and an outer radius ais
considered under the assumption that this sphere is loaded with
uniformly distributed normal forces with intensities on both the outer
p and g inner surfaces, respectively.

Let us present a mathematical formulation of the problem of the
dynamics of a hollow sphere with initial inhomogeneous stresses
given within the framework of linearized field equations.

a(r’-p’) b'@-r) _ o a2r*+b’)  pP(2r*+ad)
@-p)r* T@ -t TP Ta@ bt T 2(a’ by

0 0 0
o = Gr(¢) = J§¢) =0, (2.1)

0
ar(r) =-p

The sphere with these initial stresses is assumed to receive a dynamic
harmonic excitation over time, and it is required to determine how
these initial stresses affect the dynamic behavior (e.g., natural
frequencies) of the sphere.
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According to the three-dimensional linearized theory of elastic waves
in initially stressed bodies, these equations in spherical coordinates
(r,0,4) can be represented as follows.

Equations of motion:

ot
Ay 1%, 1 %w&(ﬂ"— —t, +1,Ct9¢) = pau
or rog rsingold r ot?
2.2)
a, 14, 1 4, 1 ou,
e =(2t, +t, +(t ct ,
o Trap rsing oo T r G Tl T (T )Clod) = p o
ot, 1, 1 o, 1 o°u
=+ +=(2t, +t, +(t, +t,)ctgg) = g
or T ap Trsing op T r Gt t Lot l)aed) =
Here
ou u ou ou
0y “Hr )| =r — (0)
t, =0, +o, e ty =0p + 0, (T+$], t, =0, +0y 8_;0’
u, 1 ou ou U
t, =0, +00 | —+ct +———-2 It =0, +o0| -2 |
oo ‘9"[r oy rsing 60} o T o r

ou 1 ou u ou
ty =0, +00 L, ty =0p+04 | —————-—"2 |, t,=0,+000 —~
or rsing 00 r

1 ou,
t6¢=0'9¢+0'ég)(rsm —p ~Cloe ] (2.3)

Elasticity ratios:
O-rr = l(grr + 890 + g¢¢)+ Zlugrr’ 696 = ﬂ,(g” + 809 + 8¢¢)+ 2/,&‘,‘99,

Opy = /1(5” &t 5¢¢)+ 2UE g5, Opg = 2HE\ g, Oy =2UEqg,, (2.4)

Oy = 2HE 4
Relationships between deformations and displacements:
_ou, . lay, 1 1 ou,

Ty Ep = U, &y =" +1u,+1u9ctg'9,
or roeg r rsind og r r

N ! (2.5)
gmzl(@ml@u_ue} o =L 1M L AU, U o)
2{or rof r 2

rog rsinf op r
1fou, 1 ou U,
£, == ZL+———-—L|
or rsin@dof r
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In (2.2) and (2.3) trr yeeey t9¢ are the components of the Kirchhoff stress

tensor in a spherical coordinate system.

As boundary conditions that are satisfied on the inner and outer end
surfaces of the hollow sphere, we take the following homogeneous
conditions:

=0t =01, =0 1], 0.1,

r= m |r:b r=l

=0, (2.6)

It is possible to formulate inhomogeneous boundary conditions instead
of the conditions given in (2.6), and the corresponding initial
conditions for non-stationary dynamic problems can also be
formulated. Note that in the case when there are no initial stresses in
the sphere, i.e. in the case where p—q=o0, the above formulation

r=l

coincides with the corresponding one in the framework of classical
linear elastodynamics. Section 2.3 is devoted to the selection and
development of a method for solving the problem. According to the
expressions in (2.1), the system of equations in (2.2) - (2.5) is an
equation with variable coefficients, the analytical solution of which, in
the general case, is very difficult and in many cases impossible. As a
rule, until recently, the system of equations (2.2) -(2.5) were solved
numerically using various numerical methods, but in the case under
consideration there is the following peculiarity in relation to the
variable coefficients: these coefficients depend only on the coordinate
r. This feature of the coefficients allows us to use the discrete analytical
method, developed and used in the works of Akbarov et al., to solve
these equations. Section 2.4 provides a discretization of the solution
domain and the derivation of equations for the functions included in
the classical Lamé decomposition. To use the discrete analytical
method, the interval rc[a,b] 1s divided into a certain number of

subintervals. To do this, we introduce notations and divide the interval
, where the notations r, —p and R, — aare introduced, are divided

into subintervals , where
UL [Ri: R ] =[Ri, R, ], Ry =R, +(k—=1)(R, —R;)/ N and
R, — R, +k(R, —R,)/N.Within each subinterval [r  r, 7, the

0
functions GSS)(I’), ég)(r) and O'¢(5¢)(r) are taken as constants, which
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are equal to the values  _ g, 4+ (r, —R,)s2, 1.€. are written in the

0
form o, ﬁf ) (fk), ég) (l'k) and O-¢(5¢))(rk) instead of the corresponding
functions. After this discretization of the interval [r g, 7, the solution
to the full system of equations (2.2)-(2.5) is performed within each
subinterval separately, in which the variable coefficients

0 0
0, r(r)(r)aaég) (r) and 0 (1(52) () in the system of equations (2.2) and (2.3)

0
are replaced by constants GSS)(VK), éz)(rk) and G;¢)(rk), where
r.—R, +(R,, —R,)/2 - On the mating surfaces between

subintervals, the continuity conditions for the force and displacement
vectors are satisfied. Denoting the thickness of each sublayer by
h, —(R —R,)/N and introducing an additional superscript for

quantities related to the (k)th sublayer, these continuity conditions can
be written as follows

@ _ @ _ @ —
t: o 0, t; r 0, trw o 0,
@ _+(2 @ _ 1+ @ _+(2
tr r=Ry+h =ty r=Rp+h’ G r=Ry+h =t r=Rp+h’ tw r=Ri+h _tr‘/’ r=Rp+h '
® ) ® ) &) _ 4@
Ur r=Ry+h Ur r=Ri+h " lr=Ry+h Us r=Ri+h ' % lr=Ry+h u‘” r=Rp+h’
£ (ND) () (N-) v
T lr=rg+(N-Dh " dr=rge(N-Dh " T dr=rg+h "0 lr=Rp+(N-D)h
(N-D) —tv (N-D) —ym™
"9 lr=Rp+(N-Dh "% lr=Rp+(N-)h " " r=R{+(N-1)h " lr=R+(N-1)h’
y(N-D ) (N-D) —y™
[ 4 1 '
r=R1+(N-1)h r=Ri+(N-1)h = % r=R1+(N-1)h ?  lr=Rp+(N-1)h
(N) — (N) — (N) —
t Ry 0, t, —rp =0, tm gy =0.
(2.7)

Section 2.5 is devoted to solving the system of equations (2.1) - (2.5).
To solve the system of equations (2.2) - (2.5) for the —th sublayer, we
use the following classical Lamé expansion, according to the
monograph by Eringen et al.
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0l = 00" +52(U€(k)) 120y _100% N _1 oy +}az(rl(k))
or or r o0 sing op r ofor
yoo_ 1 00 ap® 1 &(rxY)
* rsind 0 o4 rsind ogor
Substituting expressions from (2.8) into equations (2.2) - (2.5) for the

k sublayer, and performing cumbersome mathematical

transformations, we obtain the following equations for the functions

D V/(k) X(k) i

(k) (k) (k)
2 ¥ (0) 10 o |y (0) ctgd 0 |y
/'lv {Z(k} (rk)|: ar{r ar (k) (rk) rz % Z(k) +
1 82 l//(k) 1 _ (k)
T2 K (k)
r-o0° |y r sin® ea(p

(2.8)

A+ 2u)V?DM + 5 (I’k){ ( ﬂ
or (2.9)
2 2
()ct%96®)+1282 - 1 O w0 |- a_z(b(k),
r- o060 06 r?sin 96(/) ot
Here
2 2
vz 1a[r aj+A«9¢’ €¢=Ct920i+i262+ 2 ;LZ a2'
ror or ' ' r o0 r°o0 r‘sin“ @ o¢
(2.10)

In paragraph 2.6. Analytical solutions of equations for the functions
included in the Lamé expansion for the problem of natural oscillations
are obtained. In accordance with well-known physical and mechanical

considerations the functions (//(k) 7% and ®® are presented

" (r,0,4,)=F " (n,r)P"(cos f) cosmge™,
v (r,0,0,1) = (n r)P" (cos §) cos mge™, @.11)
7Y (r,0,4,8)=F(n,r)P" (cos #) cosmge"”,

where an (COSH) in expression (2.11) denotes the associated Legendre
functions with the m order and the n harmonic.
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Thus, substituting expressions (2.11) into equations (2.9) and (2.10),
we obtain the following equations for the functions

FOM ), FXn,r) ana F(n,r)

d2E® (n, r dE® (n,r (k) (k)
Wdfrfz( )+§ %g: Lo oy Yl D ("r”z Do mn =0,

2= (k) (k) (K) (4,(K)
d°Fy (nar)+EchD (n’r)+((7(k))2_77n (77n2 +1)JFq£k)(n,r):o’
r

dr? r dr
(2.12)

(A% = pw’ I(u+ 0P (1)), v z_%Jr V%+a(k)n(”+l),
(") = p® 1A +2u+ 5O (r)), nt =—%+1/%+ﬂ(k)n(n +1),

a® = (u+0y (6) a0 _ (/1+2ﬂ+0'4§2)(rk)).
(u+0(r) (A+2u+0(r)

Here

(2.13)
Thus, solutions to equation (6.2) are represented through spherical
Bessel functions as follows.
FY(n,1) = C%j o, (A91) + DOy, (A9),

FO 1) =EY |, (A1) + Gy ., (A1), (2.14)

Fqgk)(nv r)= A j,ﬁk) (7/(k)r) + B(k)yngn (7(k)r):

| 7 ) 7 e
Here Ja(cr): E ‘]a+l/2(cr)l ya(cr): E Ya+l/2(cr)' (215)

In (2.15), the functions 5 _  (cryand y_ . _(cry are Bessel functions

of the first and second kind with non-integer order. In the case when
O Y= Y= )=0 . .

On (rk) = Oy (rk) =04 (rk) =V, according to which o _ g _q,

the expressions in (2.14) coincide with the corresponding ones
obtained in the classical case. Using relations (2.14), (2.11). (2.8),
(2.5) and (2.4), expressions are obtained for the displacements and for
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the components of the stress tensor. To simplify the writing of the
resulting expressions, two sets of complete orthogonal functions in
[0, ] are introduced, defined as follows’:

X, (@) =P"(cosh), Y, (6) =ncotéP." (cosd) — % P" (cosd).

in
(2.16)
Using the notation in (2.16), we write the following expressions for
the required functions:
1 .
u® = F{A“‘)ul('f) +B®uf +EVuE +GPuP | X, (6) cos mge',
1
U =2 A + B + EOVY + GOV TN, (0) +
r (2.17)

+(Cly® 4 poy® )M % g)1cosm gt
( 21 22 )Sin¢9 nm( )} ¢

1 m
) _ (0 gy L KK L )y
U, _F{[A Vi, + By’ + ENvy + Gy, ]Sinexnm(e)

+(—CHVE —DOVE )Y, (0)}+sin mge,

" Guz A.N. Dynamics of an elastic isotropic sphere of an incompressible material
subjected to initial uniform volumetric loading // 1AM, vol.21, No8, 1985, pp.738-

746
0 _ 21 001w, T 00 L E 00 L @070 ot
On’” = 2 [A Ty +BV T, + BV TG +G T, J X m (8) cOs mge™”,

rr

re

0 _ 24" o, gOT0 4 EOTH L GRTE
o _r—z{[A Tyt +B T + BV Tl +G T :|Ynm 0)
+(-CUTE -DUTE) = X, (0)oosmge™,
sind

Where k-12..,N. As noted above, here N-is the number of
subintervals into which the solution region is divided relative to the
radial coordinate r, and this number is determined in accordance with
the convergence of the numerical results. Thus, substituting
expressions (2.17) considering the function with coefficients
expressed through the Bessel functions into the boundary and contact
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conditions (2.6) and (2.7), we obtain two unrelated systems of
homogeneous algebraic equations. The first (second) system contains
unknowns A B® E®and g (C®and DX). Equating to
zero the determinant of the matrix of coefficients of the first and
second groups separately, the following equations are obtained for
determining the frequency of natural vibration.

det(er,,,) =0, 0;;0, =12,...,4N (for spheroidal vibration). (2.18)
det(d,,) =0, p;;p,=12,..,2N (for torsional vibrations).
(2.19)

The expressions for the components of the matrices (aqlqz ) and (5q1q2)

can be easily determined from the expressions given in (2.17). Section
2.7 contains the results of numerical examples, analysis of the
influence of initial stresses on the natural frequencies of a hollow ball.
Numerical results are obtained by solving equations (2.18) (for the
spheroidal mode) and (2.19) (for the torsional mode), and this solution
is obtained numerically using the algorithm we developed in
MATLAB and the corresponding PC programs using the method of
dividing a segment in half (bisection method ). The results refer to

dimensionless natural frequencies, denoted as Q=wal \/,U/ P, and
were obtained for various values of the coefficients p/a, p/. and
q/ 4. - Here the last two relations characterize the initial stresses in a

hollow sphere, and the numerical results differ in vibration harmonics
and in the sequence of roots in each harmonic.

The third chapter of the dissertation, consisting of five paragraphs,
reflects the results of a study of the natural vibrations of a multilayer
hollow sphere in cases where there is a preliminary inhomogeneous
stress state in the sphere filled with a compressible fluid. The first
paragraph provides a brief overview of those works that contain
research over the past thirty years. The second paragraph is devoted to
the formulation of problems and the mathematical formulation of the
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problem. A multilayer hollow sphere is considered, the centre of which
is connected to the spherical orgg and Cartesian OX X,X; coordinate

systems. It is assumed that before the vibration of the hydroelastic
system described above, normal compression forces are uniformly
distributed on the inner and outer end surfaces of the sphere with
intensity g and p, respectively. As a result of the action of these

external forces, non-uniform initial stresses arise in the sphere. The
study is described by three-dimensional linearized equations of elastic
wave theory and linearized hydrodynamic equations of a barotropic
inviscid compressible fluid. Three-dimensional linearized equations of
inviscid fluid flow and continuity equations:

v N op n
—=-Vp, —+pV.v =0. 3.1
PO p o TPV (3.1)

- 0p. 1 op. 10p.
H Vp=—8 +—— &, +-—"¢
o P rsingog ! roy

o(r?v, ov
A% =i2 ( r)+ 1 i(v[, sing) + 1 N (3.2)
r or rsin@ o6 rsin@ o¢

Three-dimensional linearized equations and relationships for wave
propagation in elastic bodies with inhomogeneous initial stresses are
given in this dissertation work in the second chapter (2.2) - (2.5). For
the problem under study, these equations are performed separately in
each layer of the multilayer sphere. It is assumed that between adjacent
layers (at the contact surface between a solid and a liquid) ideal contact
conditions (corresponding to the conditions between a liquid and a
sphere) are observed.

Conditions for compatibility between the liquid and the inner end layer
of the sphere:
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ou® ouf? auPl o] _
Vr|r:b " *Volrap :6_i Vil b —— by = p|r=b ’
= r=b r=b
1)) @ _
t9 =0 t =0 33
ro r=h > rg r=b (3.3)

Boundary conditions on the outer end surface of the outer layer of the
sphere:

(m)

(m) —_0n +(m) _
ter ra _O’tre ‘r:a =0, tr¢

=0, (3.4)

r=a

Contact conditions between the layers of the sphere:

t@® -t® , t® -t , 1@ -t® ,
M@ M g 0|y ~ 0 |y’ Tl _q@ " T4 [y
@ —u® ) —u®? O —u®
ur r=H® Ur _HO O r:Ha)_uH r=H®’ Uy r:Hm_uaﬁ r—H®’
t(Z)‘ =t<3)‘ @ —® @ ~t®
T lhop@ T oy@” 0| _y@ " _y@” TP | _y@ T TP [y @
(m-1) —ylm) (m-1) —uylm
Yoo | oo Y0 7|y Up lepyomn =Y 7|y
mp  _g ¢m _
tm|  —p, t =0, t =0, 3.5
o, rg rg r-a (3.5)

where HY =pb+h®, . . H™ =pb+h® +h®@ 4 . +h™ =a, ...,

This concludes the formulation of the problem of natural vibration by
considering the initial stresses O E'r)o (r),o gg)o(r) and Gézo(r) , which
are determined from the solution of the corresponding static problem
formulated within the framework of the linear theory of elasticity. This
static problem relates to the determination of the stressed state in a
multilayer hollow sphere in the case when uniformly distributed
normal forces with intensity act on the internal ¢ and p external
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surfaces of this sphere. In accordance with the problem for a single-
layer sphere, we use the following representation

. g . . . (i)
UD9 () = A(')”B_z’ a0 g, uP0-0, 5(r) = A _23_3,
r r
. . g0
o) (1) =0y)"(r) = AV +—Br3 - (36)

The unknown constants in (3.6) are determined from the following
boundary A®™ and B contact conditions

10

1.0 ‘ g (1).0‘ _ (2),0‘ 2)0
O (r)r:b_ 4> or r:H(l)_o-rr r:H(l)’ U

r=H® r=H®’

(2),0‘ :u(s),O‘
rr r=H (2) r

m-1),0
O'Er )

o] o
T olen@7 T ey@

_ ~(m),0
r=H(mD T

r=H®’

r=H (™D’

_y(mao

uI(m—l),O (

, G;;n),o(r)‘ -p. (3.7)

r=H ™D r=H r=a

The solution of linear algebraic equations (3.7) is carried out on a PC
using a well-known solution algorithm in MATLAB. In the third
paragraph, the hydrodynamic equation is solved with the introduction
of potential & ().

(f) (f)
a¢ ] Vr(r19$¢1t) = aa;r )y ecee

(3.8)

p(r, 01 ¢!t) = _%

Where & () the potential satisfies the following equation
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w2 1g[r _j+ctg:9 0,10 1 &

=— , 3.9
Zarl o) 2 90" 2587 (sin 20 0 G2

We represent « () the potential in the form of the following series

o -3 Z oD (r.t) 2™ (6, 4)» 1n (0:4) =Ry (cosd)cosmg,

n=0m=
(3.10)
where an (c0sd) - is the associated Legendre function with order Im

and  with  harmonics n. Using the representation

(pr(1m) (r,t)=Rypm(r)cosat, we obtain a differential equation solution

that will look like:

T aw
R,(r) =K /—J ar), 2, === (3.11)
n(r) 20,1 n+%( ar) 27 5

here J el -is the Bessel function of the first kind with order (n+1/2)
2

and K-is the unknown constant. Substituting solution (3.11) into
equations (3.8) and (3.10), we obtain expressions for the fluid pressure
and for the radial component of the fluid velocity vector.

0 +N
p=-wppK /ZQ n+1 Q r P"(cos @) cosmg,
n=0m=-n

v, =K /ZQar smcoti Z {r n+2(Q r)-Qad, (Qar)}pnm(cosé’)cosm¢

n=0m=-n
(3.12)

Now let's consider solving elastodynamics problems that correspond

to the system of equations (2.2) - (2.5) and note that for this purpose

we use the discrete analytical method given in the second chapter.

According to this method, i-each layer of the sphere
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{ <r<H ('*1)} is divided N (1) into numerical sublayers {H O <y
<R <r<R M) <p<Rrl) } (i) _ )
} {R1 .,{Rn(l)—l <r< Rn(l) where Rn(i) H
and in each of them the initial stresses are assumed to be constant.

Thus, the system of equations (2.2) and (2.3) with variable coefficients
is reduced to the corresponding system of equations with constant

coefficients, which are satisfied separately in each sublayer {H O <y

< Rl(l)}. To solve the latter, we use the Lamé expansion for (i)
displacements. Substituting the expansion formulas in equations (2.2)
and (2.3), rewritten for the sublayer, we obtain the following equations
[ [
) g Z( k)
(i)

above equations, we present the functions o () | I/ and Y

. To solve the

(k)

for the Helmholtz potentials &, ¥/

follows:

. 0 +n R
@) (r,0,0,1) =cos(at) > > qu('k)(n,r)an(cose)cos me »

n=0m=—

. [e'e] +n A
w('k)(ng,(g,t):COS(a)t)z > Fyf'k)(n,r)an(cosH)sin me » (3.13)

n=0m=—n

. o +N A
2% (r,0,0t)=cos(t) > > FM)(n,r)RM(cos6)cosmg -

n=0m=—n

After substituting expression (3.13) into the equations for the
Helmholtz potentials, we obtain the following equations:

2 (i) (i)
d Fy/;l(”’r)+§d':9’;z(n’r)+((5(ik))2 M]F('k)(n r)=0

dr? r dr r
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2= (i) (i) (i) 7. (i) .
Ry | 207 (n,r>{( oy 10 +1)]F£k>(n,r):0
dr r dr r

(3.14)

The solution to equations (3.14) is determined similarly to the solution
given in the second chapter, with the only difference being that instead
of a layer k, a sublayer will appear i, . And they will also contain

unknown constants Crgik) , Drgk) , Ergik) , Gr(1ik) : Ar(]ik) and Brgik) to

determine which we use not only the conditions in (3.3) — (3.5), but
also additional conditions for the continuity of forces (i.e. stresses
acting on the interface between adjacent sublayers ) and displacement
vectors between the above sublayers. The result is the following
expressions for the mentioned displacements and stresses.

u('k)(r)—cos(a)t)i Z u) (r)X 1 (6) cosmg

n=0 m=

ugk) (r) = cos(wt) i i [ugﬂ (1)Ynm (0) + ugE% (r) % Xom (9)} cosmy

n=0m=-n

ug(jik) (r) = cos(wt) i +Zn: [uq%l) (r) % Xom (&) + uglér)] (")Yom (0)}sin me

n=0 m=—n

) =cos(@) S S o) (1) Xy (©)cosmg

n=0 m=—

o) (r) = cos(a)t)z Z [ §g}n(r)vnm(9)+a§g<2)n(r)% Xnm(e)}cosmgi

n=0m=-n

o) (1) = cos(cot)z Z [ E;';li](r)% Xnm(e)+o-£i¢fz)n(r)Ynm(49)}sin mg

n=0m=—n

(3.15)
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Here Xqm(0) =Py (c0s0) , Y. (8) =ncotoP™ (cose)—% P (cosd) .

The result is a system of homogeneous linear algebraic equations for
unknown constants. The characteristic equation related to the spherical
vibration mode can be represented as follows

det(aqlqz ) =0 (3.16)
00y =1 4KD: 4k 11.4kO 12, . 4k® 1 4k?): 4k 4
k@ g k™D g ak® k@) ™D gy(m)

However, this equation for the torsional vibration mode has the
following form

det(dplpz)zo, (3.17)

b Py =L 2k @2k ® 112k 12, 2k® 4 2k(D: 2k @ 4
+2k(@ 4 4 ok(MmD +1,...,2k@ 4 2k 44 ok(MD) 4 oy (M)

In (3.16) and (3.17) k(i), indicates the number of sublayers in the 1
layer of the sphere.

The fourth paragraph of the third chapter is devoted to numerical
results and discussion:

- the presence of liquid inside a multilayer hollow sphere leads to a
decrease in the values of the natural frequency of oscillations of the
hydroelastic system in relation to the natural frequency of oscillations
of the same hollow sphere; - the magnitude of this influence depends
not only on the mechanical and geometric parameters of the
hydroelastic system under consideration, but also on the number of
harmonics, and on the ordinal number of the roots; - the influence of
non-uniform initial stresses on the fundamental frequency of natural
oscillations (the first root of the frequency equation) of the
hydroelastic system is insignificant, however, these initial stresses, in
general, lead to a decrease in the indicated frequency; - a decrease in
the thickness of the hollow sphere leads, in general, to an increase in
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the influence of initial stresses on the frequency of the fundamental
mode.

Gg' /n Three layered hollow sphere
s (disribution of initial stresses)
0.000 75 « - EVEY=L ifu® =0
N 210 B
N -z/ 20
~ -~
i __~Z/7/*'--———p/u‘33 0.001
-0.002 —
A 5/ u® =0.003
-0.004 —
4 bla=0.7 =03 _ 0008
{ gope=3 p/,u =0.005
{ p@p@=pe/EE
-0.006 v/a
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Fig. 3.2. Initial voltage distribution

In the fifth section, the influence of initial non-uniform stresses on the
frequencies of natural vibrations of a hollow infinite cylinder filled
with a compressible inviscid fluid moving along the cylinder axis at a
constant speed filling the inside of the cylinder is investigated.
Accurate three-dimensional linearized equations and relations of the
theory of elastic waves and linearized equations of motion of
barotropic inviscid fluids are used. The formulation of boundary
conditions on the outer surface of the cylinder and compatibility
conditions between the cylinder and the liquid on the inner surface of
the cylinder is presented. Specific formulations are made for the
axisymmetric case and general aspects of methods for solving the
formulated problems are considered.

In the fourth chapter of the dissertation, within the framework of a
model of a piecewise homogeneous body using exact three-
dimensional equations and relations of elastodynamics, the influence
of imperfect contact between the layers of a three-layer hollow sphere

40



on the natural frequencies of this sphere is studied. The first paragraph
of the fourth chapter substantiates the conditions for non-ideality or
imperfection of contacts, which remained unexplored until recently.
The second paragraph gives a mathematical formulation of the
problem and selects a solution method. The study of natural vibrations
of a three-layer sphere is presented using exact three-dimensional
equations and relations of elastodynamics, including equations of
motion, elasticity relations and Cauchy formulas.

X3

X1

Fig. 4.1. Geometry of a three-layer sphere

The following boundary conditions are set on the outer and inner front

surfaces of the sphere:
W  _g, oM
G| _, > Oro

1 3
§¢2 r=a =0 Gﬁr) r=b =0

:O’ O

r=a

3 3
o =00 =0 4.1)

We assume that the conditions of continuity of the force vector are
satisfied at the interfaces between the layers, i.e. the following
relations hold:

A -of

— 5

(€ -
o ach Ory

2
r=a-hy oo o

2 50
(

> Or
r=a-fy v

r=a-hy r=a-hy ) r=a-hy ’
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() (3) 52 )

(X =0, s 9
L L N M (1 MINTN
o e . (4.2)
7 r=a-m-hy ¢ r=a-y-hy

The contact condition regarding movement on the surfaces between
layers is non-ideal, and this non-ideality is mathematically modeled as
the following six equalities:

u® —u®@ _hBh o
r=a—h r=a—h y7
u® i WP - Rh 0.,
=a-fy r=a-h 14
4@ _y® _ Fshy e 4.3)
¢ r=a—h—hy ¢ r=a—h—hy Ho ¢

Let us introduce the following notations: n@2 ( h(23)) - thickness of the
adhesive transition layer between main layers 1 and 2 (between main
layers 2 and 3), k@ ( k(2®) and y(lz) ( /1(23)) moduli of volumetric
and shear elasticity of the material of the transition layer between main
layers 1 and 2 (between main layers 2 and 3). For real cases, we must
proceed from the assumption of anisotropy of the rigidity properties
of the transition layer material and, in accordance with this
assumption, write:

L T L S
hy Elng) hy Er(23) h, ,U(lz)
h(23) L
—F = 2 4.4
F5 6 h2 /J(23) ( )

Formula (4.4) was introduced based on physical and mechanical
considerations and generalizations of existing formulas. Moreover, in

(4.4) through constants E( 2) and ,u(lz) (E§23) and ,u(23))the values

of the rigidity of the material of the transition layer in the radial and
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azimuthal directions are indicated. Instead, formulas (4.4) can also be
taken as a modified form of the Winkler and Pasternak model for beds
with finite thickness. The solution to the elastodynamics equations, as
in the two previous chapters of the dissertation, is constructed through

the Helmholtz representation, in which the potentials ¢(k) (r,p,0,1),
28, 0,0,) and K (r,0,0,1)satisfy the wave equations, the
solutions of which are selected in the following form

¢(k) (r,0,p,t) = [A(k) In (a(k) r)+ B(K) Yn (a(k) r)] P"(cos 8) cos mgpei“’t
y/(k)(r, 0,¢,t) = [C(k) in (,B(k)r) + D(")yn (,B(k)r } P (cos @) sin mgoei“’t
Z(k) (r,0,¢,t) = [E(k) In (ﬁ(k)r) +F (k)yn (ﬁ(k)r)} an (cos &) cos mgoei“’t

In the formulas o) = a)/Cl(k) , ,B(k) = a)/Cgk) AW E®

unknown constants, ® are the frequency of harmonic oscillations of
the sphere, cfand ¢} are the velocities of longitudinal and transverse

waves.
So, equating to zero the determinant of the matrix of coefficients of
the system of equations related to the unknowns Ak) , Bk , E®) and

F &) Jas well as to the unknowns c® and DX separately, we obtain

the frequency equation for the spheroidal and torsional modes of
vibration, which can be formally represented in the following forms:

de'[(ifqlqz(Fl, F2,...,F6)):0, 0% =12,..,12 (4.5)
det(Spyp, (F2, Fs, Fs, Fo) ) =0, py; pp =1.2,...,6 (4.6)

Note that the explicit form of the expression y, ., and &, can be

easily established from the formula for displacements and stresses, and
functions included in the expressions, as well as from the boundary
(4.1) and contact (4.2) and (4.3) conditions.
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As a result of numerical analysis, it is established that the
imperfection of contact relationships between the layers of the sphere
leads to a significant decrease in the values of natural frequencies. To
select the values of the ratios of elastic moduli and material densities
of the layers of the sphere, it is based on the corresponding selections
of the test problem, as well as on well-known mechanical engineering
considerations. Considering the significance of the influence of non-
ideal contact conditions on the value of natural frequencies of a three-
layer sphere and the possible applications of the obtained results not
only in the dynamics of layered materials, but also in geomechanics,
there was a need to continue research for high harmonics of vibrations
and for subsequent roots of frequency equations.

490 £ Spheroidal Vibration Mode (first root)
1 F”=U.
] (.5 Edl=pgrl
4.00 -1 ]\\\__ ha=0.6
i hia=0.2
12 hy=h>=h;
380 3//_’ bla=0.4
- n={
] ///’— Fpo=Fy=F =0
ds i
3.60 . - gr-'{.!gr“=pu>,rp-:lh
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J 2
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Fig. 4.2. Influence of non-ideal contact conditions between the upper

and middle layers for E@/eD different values of spheroidal
frequencies of natural oscillations Fjp =Fy1 =Fyy =0
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360 o 9 Spheroidal Vibration Mode (first root)
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Fig.4.3. The influence of imperfect contact conditions of various
options between layers on the frequencies Q of oscillations of a

spheroidal shape for harmonics n=3

In the fifth paragraph of the fourth chapter, a mathematical model of
the wave motion of a hydroelastic system is constructed - a cylindrical
shell and a compressible viscous liquid with spherical gas bubbles;
wave processes in shells with liquid interacting with each other are
studied. This interaction is often highly dependent on the deformation
of the shell itself. Within the accepted assumption that small
disturbances have formed in the two-phase liquid, we write the
linearized Navier—Stokes equation, the continuity equation of the
medium in Euler coordinates.
The linearized equation for pressure in a Newtonian fluid is obtained
in the form:

1 6%p v

az ot

du op
3p,a’ ot

4.7)

For thin shells, the validity of the Kirchhoff~Love hypothesis is
accepted. The axisymmetric case of shell motion in the Lagrangian
coordinate system is considered and the known equations of shell
motion are written. It should be noted that in a cylindrical shell filled
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with a two-phase single-velocity liquid-gas medium, which is initially
at rest, according to the coordinate transformation formula, the Euler
and Lagrange coordinates coincide. To obtain a closed mathematical
system of hydroelasticity equations, boundary and contact conditions
of the problem are drawn up, which are a mathematical model of a
steady-state wave process. For unknown functions of the system of
hydroelasticity equations p,u,,u,,w, and W, dynamic and

1y Y

kinematic contact conditions are compiled.

2 ou,
Pe= =0l pn = _(_ p _gﬂdwu +2 or }
ou, ou,
O0=—0nl _nn.="H o +_8r . (4.8)

The conditions for kinematic contact on this surface will also be
satisfied:

ow,

r

oW,

- X
! uX|r:R—h/2 B ot

(4.9)

ur|r:R—h/2 B ot
r=R-h/2 r=R-h/2

We write the solution to the linearized wave equation (4.7) of a viscous
liquid—gas medium as follows:

p:Re{p*(r)ei(k””t)} (4.10)
Having written the last dependence in equation (4.7) and performed

simple mathematical transformations, the result is the Bessel equation,
the solution of which, taking into account the limited pressure, is

P =p,Jy(4r) @.11)

After setting the components of the velocity vector of a two-phase

fluid U, and U, , taken in the same mode as for pressure, in the

linearized equation of motion, the expressions are obtained:

poi(l+igwézJ
. Pr 9y
u, =AJ (Br)- y(ﬂz—/lz) Jy(4r)
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ipok[1+i3m;2J
. Piay
u; = BJ,(fr) - J,(Ar).
° upt -2y
Here p* = —(kz +i M] - complex number.
U

In the obtained solutions, the quantities, p,, A and B are unknown
numbers, which are determined from the contact conditions of the
problem by solving the differential equations of shell motion.
Additionally, we get more conditions
B=- 18 A,
k
thus eliminating one of the four remaining unknowns. After the
transition to dimensionless quantities, the resulting expressions for
pressure and fluid velocity will be:
ﬁ* = ﬁo‘]o(zr)’

. — — . A@J,(AT) _
o =J,(BNA-i === ,

S= (DA S D,
B = K@l (AT) _
a =1=1J NA-I——— ,

X K 0( ) K+ﬂ pO
ﬂ2=—(K2+lw],

)7
_ k
A=-K?*+ —

The shell equation in dimensionless form will look like this:
O°W, ( hJ 10°W, _ oW,
=p|l-—|+— -W, -V

ot? 2) n ox* X (4.12)
o'w, (. h) o'w, _ow
— =ql-—= |+ +v——.
ot 2 0 OX
We will look for a solution in the form:
W =V_V* ei(KYJf@tf) Wo=w ei(Kwaqt’)

r r X X
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Contact conditions for tangential and normal pressures in
dimensionless form:

o e 2u( u ) 4umeu,
s :_O-rr‘rzl,ﬁ/z :—|:— p —S(UX (IK)+rJ+Sar:|

i(Kz+et)

o (0T .o ks
0="0nlranpn = _:u( m (IK)U,] g'zren,
or
D, = ﬁ*ei(K;mx)
t t ,
Or q = qelkre

Substituting the formulas for displacement and pressure into equation
(4.12) and solving for W, and w, we obtain

. .1-h/2 _. 0

W = P +q —,

@ B (4.13)

o Fik@=hr2N) . (ivek +plt-h12))

W, =B 2. —2) T4 2, —2
CD(—K +a)t) CD(—K +a)t)

The conditions of kinematic and dynamic contact (4.8) form a system

consisting of two complex linear homogeneous algebraic equations.

CllK +C, Py = 0,

S

ol

021/K\+C22ﬁ0 =0. (414)

The unknows A and P, Which are complex quantities, must be equal

to a nontrivial solution to equation (4.14). It is known that the the
determinant of the coefficient matrix is equal to zero, gives a nontrivial
solution to the equations of the system/
The result is a dispersion relation. Solving the dispersion equation
leads to the determination of a constant unknown complex wave
number K. The coefficients of the equation K consist of a constant
wave number and dimensional physical, mechanical, geometric,
kinematic and dynamic parameters of the fluid and shell.
In the case of a process that is stationary in time t and decaying along
the coordinate X, the real frequency is known @, and the required one
is the complex wave number K . In contrast to natural oscillations, we
will agree to call these oscillations steady-state oscillations.
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In the cases of K; <0, K;>0 and K; >0, K; <0 the phases of

oscillations and the excitation amplitude in the direction of
propagation of the speed of phase change correspond to the mode of

damped oscillations. L —>0, K;—o short waves and L —0,

Ky — 0 - long waves characterize the limiting state of the process.

The solution to the dispersion equation, which is a complex algebraic
equation, was obtained by a numerical method using a special
MATLAB program on a personal computer (PC).

CONCLUSIONS

1.1. For the three-dimensional theory of deformable solids, a mixed
variational type principle has been developed to determine the stress-
strain state of inhomogeneous anisotropic elastoplastic bodies during
creep under the action of neutron fluxes at finite deformations, taking
into account damageability and diffusion. The work presents a
modification of the established principle for the case of a composite
material and for structures with nanotubes, when in a heterogeneous
medium various phase inclusions are clearly expressed.

2.1-A discrete-analytical method is proposed for solving dynamic
problems of a hollow sphere with inhomogeneous initial stresses,
when the initial stresses are symmetrical relative to the center of the
sphere and depend only on the spherical radial coordinate. The essence
of the developed method is to divide the spherical layer into a certain
number of corresponding spherical sublayers, in each of which the
initial stresses are uniform, and try to find an analytical solution for
the field equations inside each sublayer separately.

3.1- numerical results on the influence of the existence of fluid and
the influence of inhomogeneous initial stresses on the natural
vibrations of the hydroelastic system under consideration are
presented and discussed.

4.1. Within the framework of the model of a piecewise homogeneous
body using exact three-dimensional equations and relations of
elastodynamics, the influence of imperfect contact between the layers
of a three-layer hollow sphere on the natural frequencies of this sphere
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was studied. The case is considered when non-ideal contact
relationships relate only to displacements. Numerical results related to
the spheroidal and torsional modes of vibration are separately
considered, and it is established that the non-ideal contact
relationships between the layers of the sphere lead to a significant
decrease in the values of natural frequencies.

4.2. It has been shown that the dynamic properties of a hydroelastic
system in technological and natural processes and living organisms
depend on the interaction of solid deformable shells and liquid with
bubbles. For shells containing liquid with spherical bubbles, the
effects of viscosity on the dynamic characteristics of wave propagation
are assessed. The shape and frequency of oscillations generated in a
dynamic system, shell-liquid, are determined.

Fundamental iteration method was used to calculate eigenvalues and
eigenfunctions to represent field quantities using MATLAB software.
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