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GENERAL CHARACTERISTICS OF THE WORK

Rationale and development degree of the topic.

Mathematical models help to study the development and
change of certain population. Note that under population one
understands a totality of individuals of one species relatively isolated
from other groups that have a common gene pool. One of the
important problems of ecology and biology is the problem of rational
use of biological resources to a certain extent. Problems of optimal
control of certain resources reduced to various optimal control
problems described by various equations.

Various problems of optimal control of population dynamics
were studied in the papers of A.V. Bukina, O.I. II'in, Yu.A.
Kuznetsov, A.S. Plyatov, A. Belyakov, A.l. Abakumov, A.V.
Argunchintseva and others. Note that the development of a
qualitative theory of optimal control of dynamics of various classes
of population problems allows working out appropriate constructive
methods allowing in principle to solve the problems under
consideration.

Many models that describe the dynamics of population are
quite complex, but adequate to accurately describe the studied
process by complex partial differential equations, two-dimensional
integro-differential equations and their discrete analogs. But such
optimal control problems have been still insufficiently studied.

Therefore, the topic of the dissertation work devoted to
derivation of necessary and in some cases of sufficient conditions of
optimality for some classes of problems of optimal control of
population dynamics is urgent.

Object and subject research. The represented dissertation
work is devoted to the study of a number of problems of optimal
control of population dynamics described by first order two-
dimensional integro-differential equations and their discrete
analogues. The subject of the research is to establish various
necessary and, in some cases, sufficient conditions of optimality in
the considered continuous and discrete optimal control problems.

3



Purpose and objectives of the study. The goal of the
dissertation work is to study some classes of continuous problems of
optimal control of population dynamics and their discrete analogues
for establishing various optimality conditions.

Research methods. The methods used in the dissertation
work is based on mathematical apparatus of theory of optimal
processes, the calculus variations, differential and integro-differential
with partial equations and their difference analogues.

The basic theses defend. Various necessary conditions for
optimality and in some cases sufficient conditions for optimality
established for continuous optimal control problems described by
integro-differential equations and their discrete analogues modeling
population dynamics. The representation of solutions of linear
differential equations and their discrete analogues obtained by
introducing into consideration the Cauchy matrix and a resolvent.

Scientific novelty of the results, obtained in the dissertation

work is as follows:
o For the first time, in the considered continuous and discrete
optimal control problems, a necessary condition for optimality was
found in the form of the maximum principle and in the linear case,
both necessary and sufficient conditions were found.

o A new necessary condition for optimality in case of
functional inequality is found.
o In continuous and discrete optimal control problems within

additional constraints, optimality conditions were obtained in the
form of a linearized maximum condition and analogue of Euler
equation.

Theoretical and practical value of research. The results
obtained in the dissertation work are of theoretical character.
However, these results can be used both for the further development
of a quality and constructive theory for the problems of optimal
control of population dynamics and when solving appropriate applied
problems occurring in applications.

Approbation and applications. The results obtained in the
dissertation work were reported and discussed at the seminars of the
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chair of “Mathematical Cybernetics” of Baku State University, at the
seminars of the laboratory "Control in complex dynamical systems™
of the Institute of Control Systems of ANAS, at the seminars of the
chair of “Differential Equations and Optimization” of Sumgait State
University, at the Republican conference “Functional analysis and its
applications” dedicated to 100 anniversary of prof. A.Sh.Habibzade
(Baku, 2016), at the VII international conference with the joint
project of Azerbaijan, Turkey and Ukraine “Mathematical analysis,
differential equations and their applications” (Madea-7) (baku,
2015), at the international conference “Dynamical systems, optimal
control and mathematical modeling” (Irkutsk, 2019), at the V and
VIII international conference “On control and optimization with
industrial applications” (baku, 2015, 2022).

Author’s personal contribution. All conclusions and results
obtained belong to the author personally

Author’s publications. The basic results of the dissertation
work were published in 18 papers. 12 of them were published in the
journals recommended by Higher Attestation Commission of
Azerbaijan at the President of the Republic of Azerbaijan; the
remaining 6 papers were published in the proceedings of
international Republican conferences.

The institution where the work performed. The work was
performed at the chair of “Mathematical Cybernetics” of Baku State
University.

Structure and volume of the dissertation work (in signs
indicating the volume of each structural subdivision separately).
The total volume of the dissertation work — 234766 signs (title page
— 393 signs, table of contents — 4802 signs, introduction — 41571
signs, chapter | — 24000 signs, chapter Il — 114000 signs, chapter 111
— 50000 signs). The list of references consists of 75 names.



THE CONTENT OF THE DISSERTATION WORK

The dissertation consists of introduction, three chapters and a
list of references.

In introduction the brief review of the works related to the
dissertation topic is given, rationale of the topic is justified and a
brief review of the obtained results is given.

Chapter | of the dissertation consists of two sections and is
devoted to the representation of solutions of two classes of linear
equations.

In section 1 we consider the following system of equations:

z,(t,x) = Alt, x)z(t,x)+ B(t, x)y(t, x) + f(t,x),

(t,X)e D:[to,tl]X[XO,Xl], (1)

y(t, x) = I[C(t, x,8)z(t,s)+ g(t, x,s)ps, (t,x)eD, (2)

with the initial condition
2(ty, x)=a(x), xe[x,%]. 3)

Here A(t,x), B(t,x), C(t,x,s) are the given (nxn) matrix
functions continuous in totality of variables f(t,x) and g(t,x,s) are
the given n—dimensional vector-functions continuous in totality of
variables, a(x) is a given n-dimensional continuous vector-
function.

The representation of the solution to problem (1)—(3) is given
studied.

In section 2 we study a difference (discrete) analogue of
problem (1)—(3) in the form

2(t+1,x)= A(t, x)z(t, x)+ B(t, x)y(t, x)+ f(t,x),

t=t,t,+1...,t, -1 X=X, X% +1.., X, 4)
y(t.x)= Y [C(t,x,5)z(t,s)+ gt x,)) 5)

with the initial condition (analogue of the Cauchy problem)
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2(ty, x)=a(x), X=Xy, X, +Lymmry X,. (6)

Here A(t,x), B(t,x), C(t,x,s) are the given (nxn), discrete,
bounded matrix functions, f(t,x), g(t,x,s), a(x)-are the given n—
dimensional discrete and bounded vector-functions, z(t,x)are the
discrete n— dimensional vector-functions.

The representation of the solution to problem (4)—(6) is found
and the one special case of equation (4) is studied.

Chapter 1l consisting of 7 sections and is mainly devoted to
finding the necessary conditions optimality. In this chapter, it is
assumed that the problems of optimal control of the population
dynamics are described by a system of special differential integro-
differential equations of one formulation.

In section 1 we study a linear problem of optimal control with
a linear quality criterion.

Let D =[t,,t,]x[x,, X ]—be a given rectangle, a(x) be a given
n — dimensional continuous vector-function, U — R" be a given non-
empty and bounded set u(t, x) be a continuous with respect to x and
piecewise-continuous with respect to t—with finite number of
discontinuity points r—dimensional vector-function of control
effects with the values from U, i.e.

ut,x)eU cR", (t,x)eD. 7)
We call these control function admissible controls.

Assume that the controlled process is a system of linear
integro-differential equations

z,(t,x) = Alt,x)z(t, x) + Xf B(t, x,s)z(t,s)ds +

+ XIIC(t, x,8,u(t,s))ds + f(t,x,u(t, x)), (t,x)eD, (8)

with the initial condition
Z(tO’ X) =a(x), xe [Xval]- 9)



Here A(t,x), B(t,x) are the given (nxn) matrix functions
continuous in totality of variables C(t,x,s,u) and f(t,x,u)—are the
given n—dimensional matrix functions continuous in totality. It is
assumed that under the made suppositions each admissible, u(t,x)

corresponds to a unique piecewise smooth with respect to, t—and
continuous with respect to x — solution z(t, x) of the Cauchy problem
(8)-(9) B

Let T, e(t,,t,] i=Lk (t, <T,<T, <---<T, <t,) be the given
points.

Let us consider a problem on the minimum of the multipoint
linear functional

S(u)= ]'lzk:c{(x)z(Ti,x)dx, (10)

Xo i=1

under the constraints (7)-(9) of problem (7)-(10). Here
c(x) i=Lk—are the given continuous n- dimensional vector-

functions.

That the prime (") everywhere for vectors and matrices means
the transposition operation.

The admissible control affording a minimum value to the
functional (10) under the constraints (7)—(9) is said to be an optimal
control, the appropriate process (u(t, x), z(t, x))—an optimal process.

Let (u(t, x), z(t,x)) be some admissible process. We introduce
the denotations

H (t, x,u(t, x),w(t,x))=w'(t, x) f (t,x,u(t, x))+ TW'(t,s)C(t,s, x,u(t, x))ds,

Ay = H(t X p)=H(t, x,T(t, )yt x)— H(t, x, u(t, ), w(t, X)),
where w(t,x) is n—dimensional vector-function being the solution
of the Volterra equation

(6,30 = [ Ao, (e, ) +
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+}Tg@@x»@ﬁww1_§;mnqu) (12)

t X
Here «(t) is a characteristic function of the segment [t,, T,

Applying one variant of the increment method we prove a
necessary and sufficient optimality condition in the form of
Pontryagin’s maximum principle.

Theorem 1. For the admissible control u(t,x) in problem
(7)—(10) to be optimal, it is sufficient and necessary that the relation

f A, H[0. X, Jdx =<0, (12)
Xo
to be fulfilled for all v(x)eU, x€[x,, x| and @ €lt,,t,). Here and in

the sequel @ elt,,t,) is an arbitrary continuity point u(t,x) with
respect to t.

Then it is proved that in the case of nonlinear convex quality
functional, the Pontryagin maximum condition is a sufficient
optimality condition.

At the end of the solution we consider the case of convex
control domain and prove a necessary optimality condition in the
form of linearized maximum condition.

In section 2 we consider a control process described by the
system of nonlinear equations

Z = ('[,X,Z, y’u)7 (t,X)e D= [to’t1]>< [Xo'xll (13)

y(t,x)= Xfg(t,x,s,z(t,s),u(t,s))is, (t,x)e D (14)

with the initial condition
2(ty, x)=a(x), x &[] (15)
Here f(t,x,z,y,u), (g(t,x,s,z,u))—is a given n-
dimensional vector-function continuous in totality of variables
together with partial derivatives with respect (z, y,u) ((z,u)), a(x) is
a given measurable and bounded n-dimensional vector-function



u(t,x) r-—dimensional and bounded control vector-function
satisfying the constraint
u(t,x)eU c R', (t,x)e D,

U is a given non-empty, convex and bounded set. We call such
functions admissible ones.

On the solutions of problem (13)—(15) generated by all
possible admissible controls, we determine a nonlinear multipoint
functional of the form

I(u)= J.¢(x, 2(T,, %), 2(T,, X),...., z(T, , x))dx. (16)
Here T e(t,,t,] i=Lk (t, <T, <T,<---<T, <t;) are the given
points ¢(x,a,,a,,...,a, )—is a given differentiable scalar function.

We consider a problem on finding a minimum value of the
functional (16) under the constraints (13)—(15).
Let (u(t,x),z(t,x),y(t,x)) be some admissible process and
w(t,x) and q(t,x) be n—dimensional vector-functions satisfying the
relation

w(t.X)= [H, (e, %, 202, %), y(e s, %), e, ) u(e, X)) —

- ia. (t\8¢(x, 2(13, %), 2(Ty, %), 2(T;, X)) (17)
=i da, ’
q(t, x)=H, (t, x, z(t, x), y(t, x), w(t, x), a(t, x), u(t, x)) (18)

where «,(t) is a characteristic function of the segment [t,,T;] and
H (t, %, 2(t, x), y(t, ).y (t. x), q(t, x), u(t, x) =

= Tq’(t, s)a(t,s, x, z(t, x)u(t, x))ds +y'(t, x) f (t, x, z(t, ), y(t, x), u(t, x)).

Considering the introduced denotations and taking into
attention the conjugated system (17)-(18), we represent the
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increment of the quality criterion corresponding to the admissible
controls u(t x) and T(t, x)=u(t, x)+ Au(t, x) in the form

Al(u “H t, %, z(t, x), y(t, x), w(t, x),q(t, x),u(t, x))Au(t, x)dxdt +
ty %
+7(u; Au) (19)
where 7(u;Au) is a residual term of the increment formula whose

explicit form is in the dissertation. By means of the increment
formula we prove (19)

Theorem 2. Under the assumptions made for the optimality
of the admissible control u(t,x) in problem (13)—(16) it is necessary

and sufficient that the inequality

FTH (6 x, 20 %), vt )0t ) g(t, ) ult, ONvt, x)—u(t, ) <0 (20)

to Xo
be fulfilled for all v(t,x)eU cR", (t,x)eD. The relation (20) is an

analogue of the linearized integral condition of maximum. It yields a
point wise linearized maximum principle.

In section 3 we consider the following boundary control
problem.

It is assumed to find the minimal value of the Bolsa type
functional

1) = #alx)+  Glx,2(6, X)), (1)
under the constraints
Z, = (t,X, Z, y) ( X) [to’t ] [XO’XI]’ (22)
Z(tOvX): ( )’ XE[XO’Xl] (23)
y(t,x)= [t xs2(t,s)ds, (t,x)eD, (24)
aO: F(x,a,v), X € [X, %] (25)
a(x,) =2, (26)
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v(x)eV cR", xe[xyx} (27)
Here f(t,x,z,y), (g(t,x,s,z))—is a give n—dimensional vector-
function continuous in totality of variables together with partial
derivatives with respect to (z,y) ((2)), ty,X.t,% —are given while,
F(x,a,v)—is a given n—dimensional vector function continuous in
totality of variables together with partial derivatives with respect to
X, while a, —is a given constant vector, v(x) is an r—dimensional
pieciwise continuous vector of control effects, V is a given, non-
empty and bounded set, ¢(a) and G(x,z) are the given scalar

functions continuously differentiable with respect to a andz. Such
control functions are said to be admissible.
It is assumed that each admissible control v(x) corresponds to

a unique, continuous and piecewise smooth solution a(x) of the
Cauchy problem (25)—(26), and the solution of the problem (22)—(23)
Is understood in the classical since.

Let (v(x), a(x), z(t,x)) be some admissible process, while
w(x) p(t,x),q(t,x) be steel arbitrary n-dimensional vector-
functions.

Introduce the denotations

H(t, x, z(t, x), y(t, x), p(t, x), q(t, x)) = p'(t, x)f (t, x, z(t, x), y(t, X))+

+ Tq'(t, s)g(t,s, x, z(t, x))ds,

Xo

M (x, a(x).v(x).y(x)) = ' (x)F (x,a(x). v(x))
We now assume that the vector-functions w(x), p(t,x) and
q(t, x) satisfy the relations

y(x)= M, (x,a(x), v(x)y(x))- p(ty, x), (28)
w(x)=—g¢.(a(x)) (29)

pi(t,x)=H, (txz(t x),y(t,x), plt, ). qalt,x)),  (30)
p(t,, x)=-G, (x, z(t,,x))

12



alt, x)=H, (tx, 2(t, x), y(t, x). p(t, x).q(t, x)) (31)

In the problem under consideration at first the formula of

increment of the quality functional is built and then by means of the
needle variations of control the following theorem is proved.

Theorem 3. For the admissible control v(x) in (21)-(27) to

be optimal, it is necessary that the relation
maxM (&, a(§) vy (&) =M(& alE)v(§)w($)  (32)

to be fulfilled for all & <[x,,x ). Here and in the sequel & €[x,,x,) is

an arbitrary continuity point of the control v(x).

Then we consider the case of convex control domain and
prove the analogue of the linearized maximum condition.

In section 4 of chapter 1l we study the case when a control
function occurs in the initial condition given in the integral form. A
series of necessary optimality conditions were established by the
increment’s method under various assumptions.

In section 5 we consider an optimal control problem of the
form

2,,%)= [ (6,5, 269)ds + (8, 2(t ¥)uft, x)

Xo

(t’ X)e D= [tO’tl]x [Xo' Xl]’ (33)
2(t,, x)=a(x), xe[x %] (34)
u(t,x)eU cR", (t,x)eD, (35)

I(u)= j¢(x, 2(T,, ), 2(T,, x),---, z(T,, x))dx = min,  (36)

On the assumption that Ki(t,x,s,z), f(t,x,z,u) are the

given n-dimensional vector functions continuous in totality of
variables together with partial derivatives with respect to z, while

#(x,a,,a,,...,a,)—is a given continuously differentiable scalar
function, u(t, x) is a piecewise continuous with respect to t for each
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x € [%,, %] and continuum with respect to x for each t e|t,,t,], n-
dimensional vector-function, U —is a given non-empty and bounded
set, t,,X,t,x —are given numbers, T e(t,t] i=L1k
(t, <T, <T,<---<T, <t)) are the given points.

In the problem under consideration we construct a formula
of increment of the quality functional admitting to prove Pontryagins
maximum principle type necessary optimality condition.

Considering (u(t, x), z(t, x))—a fixed admissible process, the
analogue of the Hamilton-Pontryagin function is introduced for the
considered problem in the form

H(t, x, z(t, x),u(t, x),w(t, x)) =

= [y K (6, x, 2 x)Ns 7, 0)1 (%, 208, X0t )

Xo
where w(t, x) is n-dimensional vector-function of conjugated
variables being the solution of the conjugated system

w(t.)= [ H, (2%, 202, ), vl X ue, )y (e, )~

~ Zk:ai (t)a¢(x, 2(T,, x), z(a'l;i, X),...,2(T,x)) 37)
i-1 i
where «;(t)—is the characteristic function of the segment [t,,T,]

Theorem 4. For the optimality of the permissible control
u(t, x) in problem (33)—(36) it is necessary that the inequality

T[H (0,%,2(0,x),v(x),w(0,x))— H(8, x,2(8,x),u(@, x), (8, x))ldx < 0,

(38)
was performed for all v(x)eU,xe X u 6 €|t,,t,).
Then, with some additional assumptions, an analogue of the

linearized maximum principle and an analogue of the Euler equation
were proved.
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In the sixth paragraph of the second chapter, the case of
functional constraints of the inequality type is investigated.
The problem of the minimum functional is considered

So() = [ (2T, %), 2(T;, %),..., 2(T,., ), (39)
under the constraints

W (T X), 2(T,, X)on 2T, X))dX <0, i=Lp,  (40)

z,(t,x)= jK(t,x,s, 2(t, s)ds + f(t,x, z(t, x),u(t, x)), (t.x)e D, (41)

2(t,, x)=a(x), xe[x,,x]=X. (42)
Here ¢(a,,a,,.,a,), i=0, p—are the given continuously
differentiable scalar function T € (to,tl], i=1k

(t, <T,<T, <---<T, <t,) are the given points, U c R" —is a given
non-empty and bounded set, a(x) is a given n—dimensional vector-
function, K(t,x,s,z) and f(t,x,z,u) are the given n- dimensional
vector-function continuous in totality of variables together with
partial derivatives with respect to z, u(t,x)—is an r—dimensional
piecewise in t for all x and continuous with respect to x for all t.
u(t,x)eU < R",(t,x)e D=[t,,t, [x[%,, x ] (43)
We call each of such a control function an accessible control.
If the solution z(t,x) of the Cauchy problem (41)—(42)
corresponding to the admissible control function u(t,x)— sufficient

the constraints (40), let's call acceptable a control, and the
permissible control that delivers the minimum value to the functional
(39) is optimal control.

Assuming (u(t,x), z(t,x)) some admissible process, introduce

the denotations
(u)=1i:S,(u)=0i=1p}
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H(t X, z,u,p,)= Tw{(t, s)K(t,s, x, z(t, x))ds +w/(t, ) f (t, x, z(t, x),u(t, x)),

where w,(t,x), i=0,p n-dimensional vector-function being the
solution of the system of control
)| ACTALT A rll)
%o i=1 8aj
4y :
N AH(z,x, 2(z, x),u(z, x),y; (7, x)) d
t oz
where ¢;(t) is a characteristic function of the segment

T

[tO,TJ.], j =1k. For complicity the assume that

Ju)={12,---,m} (m<p)
The following theorem is proved under the made
dissertations.
Theorem 5. For the admissible control u(t,x) the optimal on

problem (39)—(43) it is necessary that for any , natural number is
the inequality

m+l %

E}'DZII [H(g;, % 2(6;, x) v, (%), (6, %)) -

%)
—H(e x,2(6;, x)u(6;. x)y; (6, x)Jix <0
be fulfilled for I, >0, @, elt,,t,), ( <6,<0,<---<6,,<t),

v,(x)eU, xe [xo,xl], j=1Lm+1
In the seventh paragraph of the dissertation, the problem of
the minimum functional is considered

t X

+ j J F(t, x, z(t, x), y(t, x), u(t, x))dxdt

o Xo
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under constraints (13)—(15). It is assumed that the control domain is
an open set.

The first and second variations of the quality functional are
calculated and with their help an analogue of the Euler equation and
the Legendre-Klebsch type optimality conditions are proved.

The third chapter of the dissertation is devoted to the
derivation of various optimality conditions for discrete analogues of
optimal control problems of population dynamics considered in the
second chapter.

It should be noted that in recent years M.J.Mardanov, T.Q.
Melikov, K.T. Melikov, S.T.Melik obtained new and important
necessary conditions for optimality in discrete optimal control
problems described by one-dimensional, that is, ordinary difference
equations.

In the first paragraph, the problem of the minimum of a linear
functional is considered

S(u)= Te'(x)z(t, x), (44)
under restrictions
2(t +1,x) = A(t, x)z(t, )+ B(t, )y(t, x)+ f(t, x,u(t, x)),

t=t,t,+1....t, =L X=X, X +L...,X, (45)
2(ty, x)=a(x), X=%g X +1,..., X, (46)
y(t, x)= i[c(t, x,8)z(t,s)+ D(t, x,s,u(t,s))} (47)

ut,x)eU cR", t=ty,ty+1,....t, =L X=Xg, X, +1,..., %, (48)
Here A(t,x), B(t,x), C(t,x,s) are given (nxn) discrete matrix
functions,  f(t,x,u), D(t,x,s,u)—given n-dimensional discrete
vector-functions, a(x) is a given initial discrete vector function, U —
is a given nonempty and bounded set, u(t,x) is an r —dimensional
discrete control vector function (permissible control), c(x)—is a
given n-dimensional discrete vector function.
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Let (u(t,x) z(t,x)) some valid process. Let 's introduce the
notation

H(t, x,u,p) = w'(t, x)t, x, u(t, X))t + Zz// t,s)B(t,s)D(t,s, x, uf(t, x))

S=X,

and let's put
AggH [t,x]=H(t, x, z(t, x), T(t, ), w(t, x))— H(t, x, z(t, x), u(t, x), w(t, x))

where w =w(t,x) is an n-dimensional vector function that is a
solution to the problem (conjugate system)

wlt-1x)= At xw(t,x)+ ZC t,s,x)B'(t,s)y(t,s), (49)
P (50)

Theorem 6. For the admissible control u(t,x) in the

problem (44)—(48) to be optimal it is necessary and sufficient that the

condition
-1 %

Z ZAv(t,x)H [t’ X"//]S Oa

t=ty X=X,
to be fulfilled for all v(t,x)eU, t=t,t,+1...,t, -1;
X=Xg, X +1...,%
Then, the case of nonlinear and convex quality functional is
studied.
It is proved that in this case the discrete maximum principle is also a
sufficient condition for optimality.

In section 2 of this chapter we study an optimal control
problem described by the difference equation

z(t+1,x)= f(t, x, z(t, x), y(t, x), u(t, x)), (51)

t=t,t,+1,....,t, =1, X=X, X +1...,%

2(t,, x)=a(x), X=Xy X, +1,..., %, (52)
y(t, x)= ;g(t,x,s, z(t,s),u(t,s)), (53)

t=t,,t,+1...,t, =1, X=X, % +1...,%

18



Here  f(t,x,z,y,u), (g(t,x,s,z,u))—is a given n-
dimensional vector-function continuous with respect to (z,y,u)
((z,u)), for all (t,x,s) together with partial derivatives with respect
to (z,y)((z)) t,,%,t,% —the given numbers t,—t,, x —X, are
natural numbers, a(x)—is a given discrete initial vector-function,
u(t,x) is r—dimensional discrete vector of control effects with the
values from the non-empty and bounded set U < R"i.e.

ut,x)eU cR", t=ty,t, +1...,t, =1, X=X, % +1...,% (54)

(admissible control).
The problem is to minimize the functional

1(u)= 3 glx, 2t ) (55
under the constraints (51)—(54), where @#(x,z) is a given,

continuously differentiable with respect to z and discrete with
respect to x scalar function.

Let (u(t, x), z(t, x)) — be some admissible process, the set
f(t,x z(t, x), y(t, x)U) = {a:a = f(t,x,z(t,x), y(t, x)v(t,x)) v(t,x) €U,
t=ty,t,+L...,t, =L X=%5, % +1,..., %},
g(t,x,s,z(t,5)U)={p: B=g(t,xs,z(t,s) v(t,s))v(t,s) €U,
t=ty,ty+1...,t, =L S=X%g, % +1,..., %}, (56)
be convex for all (t,x) and (t,x,s) respectively. Using one variant of

the increment method developed for the considered problem, we
prove an analogue of the discrete maximum principle.

We introduce an analogue of the Hamilton-Pontryagin
function in the form

H(t, x, z(t, x), y(t, ), u(t, x), p(t, x), q(t, x)) =

= (6 (6,2t %), (6 X)ult X))+ S s) (s, x,2(t X) ut, X))

S=X,

19



where p(t,x) and q(t,x) are n-dimensional vector-functions
satisfying the relation

p(t -1 x) = H, (t, x, 2(t, x), y{t, x), u(t, ), p(t, x),q(t, x)),

p(tl' X) =—¢, (X’ Z(tr X)),
alt, x)=H, (t, x, 2(t, x), y(t, x), u(t, x), p(t, x), a(t, ))

We prove the following theorem.

Theorem 7. If the sets (56) are convex, then for the
optimality of the admissible control u(t,x) in the problem (51)—(55)

it is necessary that the inequality

-1 x

DD AeHIt X plt %), alt, x)] <0, (57)

t=t, s=X,
to be fulfilled v(t,x)eU, t=ty,t;+1....t; =L X = X5, X, +1,..., %

Under the assumption that the control domain is open we
establish the analogue of the Euler equation.

Necessary conditions for optimality of boundary control
under various assumptions on the problem data (parameter) are
established in the last section.

We consider a controllable discrete process described by the
system of nonlinear difference equations

2(t+1,x)= f(t, x, z(t, x), y(t, x)),

t=t,,t,+1....t, -L X=X, % +1L...,X%, (58)
2(t,, x)=a(x), X=X % +1...,% (59)
with the initial condition, where
= glt,x,s,2(t,s)), (60)
s=Xg
t=t,,t,+1...,t, =L X=X, X +1,...,X. (61)

Here f(t,x,z,), gt x,s,z) —is a given n-dimensional
vector-function continuous in totality of variables together with
partial derivatives with respect to (z,y)(2)), t,,%,.t,, % —are the

given numbers and the differences t, —t,, x, —x, are natural
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numbers a(x) is n-dimensional vector-function being the solution
of the problem

a(x+1)= F(x,a(x)u(x)), x=%5,% +1....,x, =1  (62)

a(x)=a, (63)

where F(x,a,u) is a given n-dimensional vector-function

continuous in totality of variables together with F,(x,a,u), is a, —

given constant vector, u(x) is r—dimensional discrete vector of

control effects with the values from the given non-empty and
bounded set U — R'i.e.

u(x)eU c R", X=X, % +1,...,x 1. (64)

Each control function u(x) with the above properties is said

to be an admissible control.
An optimal control problem is to minimize the Bolsa type
functional

S(u)=glalx )+ > G(x, z(t,, x)) (65)
Determined on the solution of problem (58)—(63) generated by all
possible admissible controls.
Considering (u(x), a(x), z(t, x)) as fixed admissible process,
we assume that the set
F(x,a(x)U)={a:a=F(x,a(x),v(x)),
U(X)eU cR',X=Xg, % +1,...,% —1} (66)
is convex for all x. We introduce the analogue of the Hamilton-
Pontryagin function in the form

H (% a(x), u(x)y(x)) =y (x)F (x,a(x).u(x))
Here w(x) IS n— dimensional vector-function of conjugated
variables being the solution of the problem

lx-1)= FF BN, ) o, 1.5,
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ogla(x,))

(s, 1)~ 2Habs),
where p(t,x), q(t, x) satisfies the relations
p(t—1x)= of (t, x, Z(;ZX) y(t,x)) olt, x)+
4,09'(t, s, %, 2(t, X))
+§ pe q(t,s),
aft x) - XL
__9G(x,z(t,,x))
o -1x)=- 2026

Theorem 8. If the set (66) is convex then for the admissible
control u(x) in problem (58)—(65) to be optimal, it is necessary that

the inequality

%1

;Ava (x,a(x) u(x)w(x))<0

to be fulfilled for all v(x) eU, X=Xy, X, +1..., X —1.

Then the establish the analogue of the linearized maximum
principle under some additional assumptions.

Theorem 9. Let in problem (58)—(65) the set U be convex
and while F(x,a,u) have continuous derivative with respect to u.
Then for the admissible control u(x) be optimal, it is necessarily has
the inequality

2> Hi(x a(x)u(x)y (x)lv(x)-u(x)) <0

X=X
to be fulfilled for all v(t,x)eU, x =X, X, +1,...,% —1.
In the case when the control domain is open, the necessary
optimality condition in the form of analogue of the Euler equation is
proved.
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CONCLUSIONS

The dissertation work was devoted to finding representations
of solutions of analogues of the Cauchy problem for linear integro-
differential equations and their difference analogues in applications
that model under some assumptions populations dynamics and to the
study of appropriate (linear and nonlinear) problems of optimal
control of population dynamics.

The work consists of three chapters.

In chapter |1 we consider the Cauchy problem for a class of
linear two-dimensional integro-differential equations in applications
modeling population dynamics.

Integral representation of the problem under consideration is
obtained.

Similar representation is obtained for solving a problem being
a discrete variant of the Cauchy continuous problem.

In both cases special cases are considered.

In chapter 1l a number of optimal control problems described
by linear and nonlinear two-dimensional integro-differential
equations are studied.

In the linear case, under the assumption of linearity of a
multipoint aim functional, L.S.Pontryagin’s type necessary and
sufficient condition is proved.

In the case of nonlinear, convex quality criterion, sufficiency
of the analogue of Pontryagin’s maximum principle is proved.

In the case of nonlinear optimal control problem a number of
L.S.Pontryagin’s type necessary optimality conditions, linearized
maximum principle, the analogue of the Euler equation are proved
under various assumptions.

The cases of boundary controls are studied separately using
the modified increment method and a number of first-order necessary
optimality conditions are studied.

In the case of aviability of inequality type constraints, a
necessary optimality condition of a constructive character and being
equivalent to the Pontryagin classic maximum principle is proved for
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a number of control problems described by ordinary differential
equations with inequality type functional constraints on the state of
the system.

Chapter 111 is devoted to the study of a number of optimal
control problems being a discrete analogue of optimal control
problems considered in chapter II.

Discrete analogues of the Pontryagin maximum principle,
linearized maximum principle, analogue of the Euler equation are
proved by using the methods of implicit and explicit linearization.

The case of boundary controls is studied separately.
Necessary and sufficient condition of optimality representing an
analogue of the discrete maximum principle is proved in the linear
case.
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