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GENERAL CHARACTERISTIC OF THE WORK 
 

Rationale of the theme and development degree.  
The dissertation work is devoted to studies of quality 

properties of solutions of second order degenerate equations of 
elliptic and parabolic type. In the dissertation, the first boundary 
value problem for second order uniformly degenerating divergent 
elliptic equations and also Holder continuity of solutions, density of 
smooth functions in a weighted Sobolev space, Holder continuity and 
Harnack inequality for the solutions of p -Laplacian with 
Mackenhoupt weight degenerated into a part of the domain, Holder 
continuity and Harnack inequality for the solutions of an elliptic 
equation uniformly degenerated into parts of the domain of elliptic 
equation containing p  Laplacian. Holder continuity and Harnack 
inequality for the solutions of uniformly degenerating into a part of 
the domain of elliptic ( )qp,  Laplacian are also studied. Furthermore, 
the Dirichlet problem for a class of nonuniformly degenerating 
elliptic and parabolic equations of second order is studied. The 
Holder continuity and Harnack inequality was studied for the 
solutions of nonuniformly degenerated parabolic equations.   
 Boundary value problems for degenerate elliptic equations are 
one of the important solutions of modern theory of partial differential 
equations.  
 The number published works on degenerate elliptic equations 
is very negligible. Concerning the second order degenerate elliptic 
equations, in this direction among first ones we can mention the 
paper of M.V.Keldysh (1951), where it is shown the case when the 
characteristical part of the boundary of the domain can become free 
from boundary conditions that can be replaced by the condition of 
boundedness of solutions. Later, in his paper A.V.Bitzadze showed 
that the boundedness condition can be replaced by a boundary 
condition with some weight function.   

Degenerate elliptic equations arise in theory of small curves 
of rotation surfaces, in theory of shells, etc. Such equations play an 
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important role in gas dynamics. These equations simulate the process 
related to diffusion and dissipation. The basic works on studying 
degenerate elliptic equations belong to Tricomi, Holmgren, 
Hellersdadt, Frankle, Jermen, Bitsadze, Babenko, Keldysh, Vishik, 
Kudryavtsev, Fiker, Vekua. Local regularity of weak solutions of 
degenerate linear elliptic equations in the divergent form were 
studied in the paper of Feibs, Kenig and Serapioni. 

Researches of divergent nonuniformly elliptic equations with 
general structure weights get started with the papers of 
S.N.Kruzhkov and N.Trudinger. 

Since at present there exist sufficiently developed theory of 
linear elliptic partial equations, there appears possibility of progress 
in theory of nonlinear equations. Significant successes in this 
direction was achieved for second order quasilinear elliptic equations 
owing to the papers of Schauder, Kaccioppoli, Lepe and others.  

In nonstationary case this theory was developed in the papers 
of V.A.Solonnikov. These results were stated in detail in a number of 
books, for example in the book of K.Miranda, D.Hilbarg, 
N.Frudinger, Ch.Morri, etc. By the development of the tool of 
Sobolev space Holder continuity of the solutions of linear divergent 
parabolic equations of second order from which in its turn the 
estimations for the solution of elliptic equations were obtained, was 
proved by quite another methods. These results for elliptic equations 
were proved by the Yu Mozer by another methods.  

Yu. Mozer’s salient result was a proof for the solution of 
divergent elliptic equations of Harnack inequalities. Holder 
continuity of solutions and strong maximum principle are easily 
derived from the Harnack inequality. In 1964 Yu.Mozer took these 
results for a parabolic case. The Harnack inequality for weak 
solutions was generalized to divergent type quasilinear equations by 
Serrin and Turdinger. 

One more proof of E.De.Georgie theorem in the case of 
elliptic equations was given by E.M.Landis.  

Later it was revealed that generally speaking, these results are 
not extended to higher order equation and systems of equations and 
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this was shown in 1968 independently by V.G.Mazya, E.D.George, 
E.Juiste and M.Mizanda. For nonlinear equations of higher order, 
these results were obtained in the papers of I.V.Skripnik.  

However, the Holder inequality holds in the case of domain       
ln 2=  for l2  order elliptic equations and quasilinear analogs.  

In the case of quasielliptic equations the similar result was 
obtained in the paper of R.V.Huseynov. The methods suggested by 
E.Di.George and Yu.Mozer were actively developed by E.Guisti, 
G.Stampakkia, O.A.Ladyzhenskaya, N.N.Uraltseva, J.Serrin, 
N.Trudinger, S.N.Kruzhkov, F.I.Mamedov and many other authors. 

These ideas became applicable also to the solutions of 
divergent elliptic and parabolic equations regardless of their 
variational nature. Rather complete theory of linear and quasilinear 
elliptic equations with minor terms including elliptic p  Laplacian 
type equations was constructed in the monograph of O.A.Ladyzhen-
skaya and N.N.Uraltseva.  

For linear parabolic equations (and nonlinear ones with the 
condition that order of coerciveness and growth of the principle part 
is linear) the similar theory may be found in the book of 
O.A.Ladyzhenskaya, N.N.Uraltseva and V.A.Solonnikov.  

In 1982 there appeared a remarkable book E.Fabes, C.Kenig 
и R. Serapioni1, devoted to regularity of solutions of divergent 
elliptic equations where the matrix )}({ xaij  

satisfies the condition of 
uniform ellipticity and the weight )(xω  belongs to Mackenhoupt’s 

2A -class. In the same years there appears a paper by E.Fabes, 
D.S.Jerison, C.Kenig,2  where for such equations the Wiener 
criterion of regularity of the boundary point was proved. This paper 
was followed by the papers of F.Chiarenza и M.Frasca in 1984,  in 
                                                 
1 Fabes, E., Kenig, K., Serapioni, R. The local regularity of solutions of degenerate 
elliptic equations // Comm. Partial Differential Equations. -1982. v.7,    -c. 77-116. 
 
2 Fabes, E.B.  Jerison, D.S., Kenig, C.E. , The Wiener test for degenerate elliptic 
equations// Annals de l’institut Fourier. -1982, v.32, no 3. –c.151-182. 
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the papers of F.Chiarenza and R.Serapioni in 1984-1987 devoted to 
linear parabolic equations with weights from the Mackenhoupt 
classes. 

The feature of equations with weight in the parabolic case is 
that here the spatial-time scale where the solution is considered, 
changes from the point to the point, respectively with the change of 
the values of weight. 

Primarily, the methods used are similar to ones that are used 
in analysis on Euclidean space, the complexity is in obtaining 
necessary Friedrichs, Sobolev and Poincare type inequalities 
Yu.A.Alkhutov and V.V.Zhikov developed a technique for analyzing 
regularity of the solution of elliptic equations with a partial 
Mackenhoupt weight, i.e. in the situation when the domain is divided 
by a hyperplane into two parts and in each of parts the weight is a 
Mackenhoupt weight. The Holder continuity was obtained and it was 
shown that the Harnack inequality in the ordinary form, generally 
speaking is absent.      

Object and subject of research. The main object of the 
thesis if a qualitative study of the properties of solutions to 
differential equations. 

Goal and tasks of the research. Study of Holder continuity 
and Harnack inequality for the solutions of an elliptic equation 
containing p  -Laplacian and uniformly degenerating by small 
parameter into a part of the domain. Study oif Holder continuity of 
the solutions of a linear degenerating elliptic equation involving the 
Lavrentyev effect. Absence of classic Harnak inequalities for p -
Laplacian with a partial Mackenhoupt weight. Finding Harnack 
inequality corresponding to such an equation. To prove of unique 
solvability of the Dirichlet problem for linear divergent 
nonuniformly degenerating elliptic and parabolic equations of second 
order. To prove the Harnack inequality and Holder continuity of 
solution of such equations. 

Research methods. In the paper, the methods of theory of 
differential equations, theory of functional spaces, theorems of 
imbedding and functional analysis were used. The main tool of the 
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study is the developments of iteration technique a’la Moser-Di. 
George-Ladyzhenskaya-Uraltseva.     

The main statements to be defended. The following main 
statements are defended: 
1. Holder continuity of the solution of second order linear elliptic 
equations of divergent form with a weight on the plane in four-phase 
form when interphase bound are coordinate straightlines and the 
weight is a power function in each of phases. 
2. Holder continuity of solutions and Harnack inequality for p -
Laplace equation with partially Mackenhoupt weight in two-phase 
case when the interphase boundary is a hyperplane. .  
3. Holder inequality and Holder continuity of solutions for a p -
Laplace type equation uniformly degenerating by a small parameter 
into a part of the domain.  
4. Holder continuity of solution of p -Laplacian with a Mackenhoupt 
weight uniformly degenerating by a small parameter into a part of the 
domain. 
5. Holder continuity of solutions uniformly degenerating by a small 
parameter into a part of the domain of the −)(xp  Laplace type 
equation with a variable exponent p . 
6. Harnack inequality and Holder continuity of solution of 

−)(xp Laplacian with two-phase piecewise constant exponent )(xp  
in the case when a hyperphane is an interphase and in one of them 
the equation uniformly degenerates by a small parameter. 
7. Estimation of the maximum of modulus of eigen functions of the 
Dirichlet problem for a second order divergent uniform elliptic 
operators containing a small parameter on a part of the domain. 
 8. Theorems on the existence and uniqueness of solutions of the 
Dirichlet problem for a class of second order, divergent form linear 
nonuniformly degenerating elliptic equations with minor terms. 
9. Existence and uniqueness of solutions of the first boundary value 
problem for a class of linear divergent nonuniformly degenerating 
parabolic equations of second order, Harnack inequality and Holder 
continuity of solutions of such equations.  
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Scientific novelty of the study. In the dissertation work the 
following results were obtained: 
1. Linear elliptic equations with a partial Mackenhoupt weight were 
studied. Holder continuity of solutions was proved.  
2. p -Laplacian type nonlinear elliptic equations with a partial 
Mackenhoupt weight were considered. Holder continuity of solutions 
and Harnack inequality were proved. 
3. −)(xp Laplacian type elliptic equations degenerating by a small 
parameter into a part of the domain were studied, Holder continuity 
of solutions was proved.  
4. p -Laplacian type linear and nonlinear elliptic equations 
degenerating by a small parameter into a part of the domain were 
considered. Harnack inequality and Holder continuity of solutions of 
such weightless equations and equations with a Mackenhoupt weight 
were proved. p -Laplace equation with variable two-phase index p 
when the interphase is a hyperplane, was considered separately.. 
5. Linear nonuniformly degenerating elliptic equations were studied. 
Sovability of the Dirichlet problem for a class of the Dirichlet 
problem for a class of second order nonuniformly degenerating 
elliptic equations was proved. 
6.The estimation of continuity of a boundary point of the solution of 
the Dirichlet problem for second order nonuniformly degenerating 
elliptic equations was given. 
7. The estimation of the modulus of the first eigen function uniform 
by the parameter was found for a second order linear elliptic equation 
containing a large parameter on a part of the domain. 
8.Weak solvability of the first boundary value problem in Sobolev 
weight spaces was proved for linear nonuniformly degenerating 
divergent parabolic equations. 
9.The Harnack inequality for the solution of nonuniformly 
degenerating second order divergent parabolic equations was proved. 
10.The Holder inequality of solutions of second order nonuniformly 
degenerating parabolic equations in the divergent form was shown. 
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 Theoretical and practical value. The results obtained in the 
dissertation are new. The work is of theoretical character and fills a 
certain gap in theory of partial differential equations. Its results may 
be used for further development of quality properties of solutions for 
degenerating elliptic and parabolic equations.   
 Approbation and application. The basic results of the 
dissertation were discussed at the seminars of the departments 
«Mathematical physics equations» (corr. members of ANAS, prof. 
R.V.Huseynov), «Differential equations» (prof. A.B.Aliyev), 
«Nonharmonic analysis» (corr. members of ANAS, prof. 
B.T.Bilalov), at the institute seminar of IMM, at the seminar of the 
chair «Mathematical physics equations» BSU (acad. 
Yu.A.Mamedov), at the seminars of the chair «Differential and 
integral equations» BSU (prof. N.Sh.Iskenderov) and at the scientific 
seminar of the Institute of Applied Mathematics, BSU.  
 The main results of the dissertation were also reported at the 
seminar of VL.SU named after A.G. and N.G.Stoletov guided by 
V.V.Zhikov and Yu.A.Alkhutov and also at the following 
conferences: at the X International conference on mathematics and 
mechanics devoted to 45 years of IMM (Baku 2004), the All Union 
conference on mathematics and mechanics devoted to 50 years of 
corr. member of ANAS, prof. I.T.Mamedov (Baku 2005), 
«Theoretical and applied problems of operator equations» devoted to 
75 years of prof. Yu.D.Mamedov (Baku 2006), at the International 
conference on mathematics and mechanics devoted to 70-th 
anniversary of acad. A.D.Gadjiev (Baku 2007), at the Republican 
conference «Actual problems of mathematics» devoted to 85 years of 
the national leader of Azerbaijan Heydar Aliyev (Baku 2008), at the 
III International conference devoted to 85 years of corr. member of 
RAS, prof. L.D.Kudryavtsev (2008), at the International conference 
on physical, mathematical and technical sciences (Nakhichevan 
2008), at the International conference on mathematics and mechanics 
devoted to 50 years of IMM of ANAS (2009), in the materials of the 
international scientific conference devoted to 90 years of BSU, at the 
international conference «Spectral theory and its applications» 
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devoted to 80-th anniversary of acad. F.G.Maksudov (2010), at the 
International conference devoted to acad. Z.Khalilov (2011), at the 
International conference «Theory of functions and problems of 
harmonic analysis» devoted to 100 years of acad. I.I.Ibrahimov 
(2012), at the conference devoted to 90-th anniversary of Heydar 
Aliyev (2013), at the International conference devoted to 55 years of 
IMM (Баку 2014), at the International conference on differential 
equations and dynamical systems (Suzdal 2010, 2016, 2018), 
Proceedings of the 6th international conference on control and 
optimization with industrial applications (Baku 2018). 
 The results of the dissertation were discussed with professors     
[I.T.Mamedov], [V.V.Zhikov], Yu.A.Alkhutov, [R.V.Huseynov], 
Yu.A.Mamedov, A.B.Aliyev, F.I.Mamedov, B.T.Bilalov, 
T.S.Gadjiev to whom I expressed my deep gratitude for discussions, 
valuable remarks and support.  
 The personal contribution of the author is in formulation of the 
goal and choice of research direction. Furthermore, all conclusions and 
obtained results and also research methods belong to the author.  
 Author’s publications. Publications in the editions recommended 
by HAC under President of the Republic of Azerbaijan -24, conference 
materials- 1, abstracts of reports- 23. 
 The institution where the dissertation work was executed. The 
dissertation work was executed at the chair «Higher mathematics» of BSU. 

 Structure and volume of the dissertation (in signs, by 
indicating the volume of each structural subsection separately). The 
volume of the dissertation work – 489400 signs (title page – 288 signs, 
content – 2853 signs, introduction –81600 signs, chapter I – 134000 signs, 
chapter II – 136800 signs, chapter III – 42000 signs, chapter IV – 
95000 signs). The list of used references 154 names. 

 
MAIN CONTENT OF THE DISSERTATION 

     
 The dissertation consists of introduction, four chapters, 
references.  
     In introduction the urgency of the theme is justified, its degree of  
elaboration was shown, goal and tasks of the study was formulated, 
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scientific novelty is given, theoretical and practical value of the study 
is noted, information on approbation of the work was represented.  
 Quality properties of the solutions of linear and nonlinear elliptic 
equations with a partial Mackenhoupt weight containing p -
Laplacian are studied in chapter I. The main results of this chapter 
are in the author’s papers [11,12,13,14,15, 18,35,42]. 
 Section 1.1 studies solvability of a model uniformly degenerating 
second order elliptic equation for which the set of smooth functions 
is not dense in the appropriate weight Sobolev space W . The notion 
of W - and H - solutions is introduced, a unique solvability of 
appropriate W - and H - Dirichlet problems is proved.  
 Consider in a unique circle 2RB ⊂  centered at the origin of 
coordinates a degenerating elliptic equation  
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The following class of functions ),( ωBW   is connected with 
equation (1):  
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221

1 BLuuBWuuBW ∈∇+∈= ωω                   (3) 

Here )(1
1 BW is a class of Sobolev space of functions summed in B  

together with generalized derivatives of first order. Below  ),( ωBW  
is considered as a weight Sobolev space with the norm   
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W
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Since ),(1
1 BL∈−ω  then the space ),( ωBW  is complete. We will 

denote the closure of the sets of functions from ),( ωBW  with a 
compact carrier in B  by ),(0 ωBW . The weight under consideration 
satisfies the Mackenhoupt 2A -condition in each fourth plane and the 
Friedrichs inequality holds 

).,(0
22 ωωω BWudxuCdxu

BB

∈∀∇≤ ∫∫                (4) 

Therefore, in the Sobolev space  ),(0 ωBW  we can give the 
norm by the equality  

∫ ∇=
B

W
dxuu ω22

0
.  

We introduce one of possible  notions of the solution of equation (1).  
Definition 1. The function ),( ωBWu∈  is said to be the 

W solution of equation  (1) if the integral identity   
0=∇∇∫

B

dxu ψω                                     (5) 

was fulfilled on test functions ),(0 ωψ BW∈ .  
The set of smooth functions in B  is not dense in the spaces 
),( ωBW  and ),(0 ωBW . The proof of this statement in the case when 

the weight function (2) satisfies the condition 2121 ββαα === , can 
be found in the papers of V.V.Zhikov.   
 In connection with what has been said, it has sense to 
determine the spaces ),( ωBH  and ),(0 ωBH  as a closure in ),( ωBW  

of the spaces ),()( ωBWBC ∩∞  and ),(0 BC ∞  respectively.  
 Definition 2. The function ),( ωBHu∈  is said to be H -
solution of equation (1), if integral set (5) is fulfilled on the test 
functions ),(0 ωψ BH∈ .  
 The above W -solutions and H -solutions of equation (1) are 
connected with W -and H -Dirichlet problems 

01 =Lu   in B ,   ),(1 ωBWu ∈ ,  )(BCh ∞∈ , ),()( 01 ωBWhu ∈−   (6) 
and  
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02 =Lu  in B , ),(2 ωBHu ∈ , )(BCh ∞∈ , ),()( 02 ωBHhu ∈− ,  (7)                                                     
respectively. For the weight function of the form  
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the notion of W - and H -solutions of the equation of the considered 
type was introduced by V.V.Zhikov, a unique solvability of W -and 
H -Dirichlet problems and existence of their various solutions with 
one and the same boundary function was established in the papers of 
Yu.A.Alkhutov and V.V.Zhikov  
 Below )(xω  means a weight determined by equality (2). For 
the functions ),( ωBWu∈  we use a polar system of coordinates 
centered at the origin of coordinates, given by the equality    
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Below )(1
2 DW  means the Sobolev space of function, 2L -      

summable in the domain D  together with generalized derivatives of 
first order. We have the following statement. 
 Lemma 1. For belonging the function )(xu  to the weight 
Sobolev space ),( ωBH  it is necessary and sufficient the equality 

)0()0( )2()1( uu =  to be fulfilled. This time the space H  has a co-
dimension  1 in .W  The function ),( ωBWu∈ given below: 
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does not belong to the Sobolev space ),( ωBH . 
 The spaces ),(0 ωBW  and ),(0 ωBH  are Hilbert spaces with 
the scalar product 

∫ ∇∇=
B

dxuu υωυ, . 

We have the following theorem. 
 Theorem 1. Problems (6)-(7) are uniquely solvable and there 
exists a boundary function  )(BCh ∞∈ , for which the solutions 

)(1 xu  and )(2 xu  are different.    
In section 1.2 Holder continuity of  W - and H - solutions is 

studied. 
 Theorem 2.  If the weight )(xω  satisfies condition (2), then 
H  - solutions of equation (4) are Holder in B , while W  solutions 
that are not H  -solutions are discontinuous at the origin of 
coordinates and are Holder in }0,0:{ 21 ≥≥∩ xxxB and  

}0,0:{ 21 ≤≤∩ xxxB .  
 Since the weight function )(xiω  satisfies the 2A -
Mackenhoupt condition and one even with respect to coordinate 
straightlines, then the following Sobolev inequality is valid  
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From (11) and Moser’s iteration technique we arrive at the following 
statement. 

Lemma 2.  Any W - solution and H - solution of equation (1) 
are locally bounded in B . 

The key role in the proof of the theorem is played by the 
weight estimation of the solutions of the considered equation. To 
formulate it, we denote by rB , where Rr ≤ , open circles of rather 
small radius r  centered at the churches )(i

RS , ,3,1=i  assuming 
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where u  is the solution of equation (1). The introduced function is a 
bounded positive subsolution of the same equation. Below we 
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From the results of Yu.A.Alkhutov and V.V.Zhikov’s papers 
on Holder continuity of the solution of elliptic equations with 
partially weight it follows that the W - solutions and H -solutions of 
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equation (1)  are Holder in )}0,0{(\B .  Therefore, the proof of 
theorem 2 is reduced to studying the behavior of solutions at the 
origin of coordinates. Modification of Moser’s method develop by 
the another and based on the estimations of theorem 3 and statement 
of lemma 1 is the base of the proof.  

After theorem 3 the reasonings are devoted to the proof of the 
Moser estimation for the maximum of the subsolution )(xϑ  on the 
archs )(i

RS , where ,3,1=i  through the mean values of the integrals 
along the sets )(i

RD . For that it is necessary to integrate the 
inequalities obtained in the given theorem. However, the ordinary 
scheme of proof can not be used here because of restrictions on the 
constant γ . The suggested method is in integration of inequalities 
along the sequence of circles with geometrically decreasing sequence 
of radii and satisfying the restrictions on the constant  γ , allows for a 
finite number of step to pass to the circle )(0 ix

r DB ⊂ . After this, 
ordinary reasonings based on the Moser technique are used. 

In section 1.3 necessary and sufficient conditions on a special 
kind weight providing density of smooth function in the Sobolev 
weight space are found. 

Let us consider on a unit circle { }1: <= xxB  of the 
Euclidean plane 2R  the Sobolev weight space with the weight  

( )
( )





<

>
=

−

.0,

0,
)(

21

21
1

xxforxf

xxforxf
xω  

Fulfilment of the following conditions is required from the function 
f , participating in determination of the weight. We will assume that 

)(tf  is continuous, does not decrease on ( ]1,0   and 

,
2
1,0)()2( 




∈∀≤ ttfctf                                  (12) 

.
)(

)(sup
0

1

)1,0(
∞<
















∫∫

∈

t

tt f
ddf
τ
ττ

τ
τ                              (13) 
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After this, not especially stipulating, we will additionally 
assume ).(1

1 BL∈−ω  Hence it follows that the space ),( ωBW  is 

complete. In particular, the functions of the form ,
2
1ln)( αγ −⋅= t
t

tf
 

where ( ),,+∞∞−∈γ  )2,0(∈α satisfy the given conditions. 
In the case when )2,0(,)( ∈= − ααttf , this issue was solved 

in V.V.Zhikov’s papers. In our case, subject to conditions (12),(13) 
the set of functions from ( ) ),( ωBWBC ∩∞ , generally speaking are 
not dense in ),( ωBW . In this connection, we determine the space  

),( ωBH  as a closure in ),( ωBW  of the set ( ) ),( ωBWBC ∩∞ . 
Theorem 4. The function ),( ωBWu∈  belongs to the space 
),( ωBH  if and only if 

)()( 31 uLuL = ,   
where 

∫ =
→

2/

0
10

)(),(2lim
π

θθ
π

uLdru
r

, ∫→
=

2/3

03 ,),(2lim)(
π

π

θθ
π

druuL
r

 

Section 1.4 was devoted to the interior a priori estimation of 
the Holder norm of weak solutions of second order uniformly 
degenerating quasilinear elliptic equations of divergent form. 

Consider in the domain nRD ⊂ , 2≥n , the elliptic equation 

∑
=

− >==







∂
∂

∇
∂
∂n

i i

p

i

constp
x
uux

x1

2 1,0)(ω ,      (14) 

where .0)( ≥xω  In order to determine the solutions, we introduce a 
class of functions 

)}(),(:{),( 11,1 DLuDWuuDW loc
p

locloc ∈∇∈= ωω  
where )(1,1 DW -is a class Sobolev space. Under the solution of 
equation (14) we understand the function ),( ωDWu loc∈ , for which 
the integral set   
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0)( 2

1
=

∂
∂

∂
∂

∇ −

=
∫∑ dx

xx
uux

ii

p

D

n

i

ξω  

was fulfilled on finite test functions ),( ωξ DWloc∈ . The goal is to 
prove the Holder continuity of the solution of equation (14). There is 
a great number of papers devoted to this topic. The case when the 
weight function )(xω  satisfies the Mackenhoupt pA -condition was 
most studied. The case 2≠p  was studied in the papers of  Heinonen 
J., Kilpelainen T., Martio O3. Remind that the weight )(xω , 
determined in all the space  nR , satisfies the pA -condition if  

,1,)(1)(1sup
1

1
1

∞<<∞<



















−

−
−

∫∫ pdxx
B

dxx
B

p

B

p

B

ωω  

where the supremum is taken on all spheres nRB ⊂ .  
The standard example of such a weight is a power function 

αω xx =)( , where nn <<− α ( 1−p ), and also 
αω nxx =)( , where 

11 −<<− pα . 

The important corollaries of Mackenhoupt’s pA -condition 
are the doubling conditions  

),()( 2 rr BcB ωω ≤                                                    (15) 
the Sobolev inequalities 

,
1

),(,),( 0

1

∫∫ −
=∈∇≤









 ∞

rr B
r

pp
k

B

pk

n
nkBCdrpncd ϕµϕµϕ   (16) 

the Friedrichs inequalities 

∫∫ ∇≤
rr B

p

B

pp drpncd ,),,( µϕνµϕ  

                                                 
3 Heinonen, J., Kilpelainen, T., Martio, O. Nonlinear potential theory of degenerate 
elliptic equations// Mineola. NY: Dover Publ. Inc.,- 2006. Xii+404 pp. 
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0,,0),( >≥=∈ ∞ γγϕϕ rEr BEBC . 
 In the Yu.A.Alkhutov and V.V.Zhikov’s paper weight 
functions of a more general form were considered. More exactly, it is 
assumed that the hyperplane }0:{ ==Σ nxx  divides the domain D  
into two subdomains  

}0:{)1( >∩= nxxDD  and }0:{)2( <∩= nxxDD  and 







=
,)(

,)(
)(

)2(
2

)1(
1

Dвx
Dвx

x
ω

ω
ω                                         (17) 

where each of even with respect to ∑  weight functions 
,2,1),( =ixiω  satisfies the Mackenhoupt pA -condition. 

Furthermore, for the spheres rB  centered at ∑  for almost all rBx∈  
for 0rr ≤  the following inequality    

)(
)(

)(
)(

2

2

1

1

rr B
xc

B
x

ω
ω

ω
ω

≤                                      (18) 

with the constant c , independent of r  and x  was fulfilled.  In 
particular, in  0r  vicinity ∑  

)()( 21 xcx ωω ≤ . 
For these weights, the doubling condition (15) and Sobolev’s 

inequality (16) violate in the general case. In Yu.A.Alkhutov and 
V.V.Zhikov’s paper it was shown that for 2=p  subject to conditions  
(17) and (18) the solutions of equations (14) are Holder continuous 
and in this time the classic Harnack inequality is absent in the 
general case. 

The key role in the proof of the Holder continuity of solutions 
is played by the following statement. 

Lemma 3. Let )(xϑ  be a positive bounded subsolution of 
equation  (14),  i.e.  

∑∫
=

∞− ≥∈∀≤
∂
∂

∂
∂

∇
n

i ii

p

D

DCdx
xx

x
1

0
2 0),(,0)( ξξξϑϑω

 
in D . 

Then for any sphere  DB R ⊂8  the following inequality is fulfilled 
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p

B

p

B

p

B
RRR

dxdxcx
/1

21
)2(

2
)1(

2

)()()(sup










+≤ ∫∫ µϑµϑϑ , 

where the constant  c  depends only on ω,,, upn . 
 The domain )1(D  and )2(D  play various roles in the proof of 
this lemma. This is connected with the fact that in the spheres with a 
center dividing the hyperplane, there is no a weight Sobolev 
imbedding theorem with increased summability index.  
 Then we prove the following main result. 
 Theorem 5.  If ω  satisfies conditions  (17) and (18), where 

1ω  and 2ω  are even with respect to the hyperplane ∑  functions, 
belonging to the Mackenhoupt pA class, then all the solutions of 
equation (14) are Holder in D .   

In section 1.5 the absence of the classic Harnack inequality 
for the solutions of equation (14) with the weight satisfying 
conditions (17), (18) is proved and the Harnack inequality 
corresponding to this equation is established. 
 Earlier it was shown that if pA∈ω , then the solution of the 
equation  (14) are Holder in D  and for all non-negative in DB R ⊂4  
solutions, the Harnack classic inequality is proved  

uconstu
RR BB

supinf ⋅≥ .                                             (19) 

We have established that if in the spheres RB centered at  D∩∑    the 
condition  

∞→
)(
)(

1

2

r

r

B
B

ω
ω  for 0→r , 

is fulfilled, then the classic Harnack inequality (19) and Sobolev 
inequality (17) do not hold knowingly The proof of this result is 
based on the estimations of volume potential. 
 Since the classic Harnack inequality (19) violetes in the 
spheres centered at the hyperplane  ∑ , in the formulation of the 
result just such spheres participate and below we assume   
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}.2/:{ RxRxBB nRR −<<−∩=                                 (20) 
The following statement holds. 

Theorem 6. If the weight )(xω  satisfies conditions  (17), (18) 
and )(xu  is a non-negative solution of equation (14) in the sphere 

DB R ⊂4  centered at ∑ , then we have the following inequality 
,supinf uu

RR BB
γ≥                                     (21) 

where the positive constant  1<γ  is independent of  u and R . 
The Holder property of the solution at the points D∩∑  and 

as a corollary, Holder continuity of solutions on all the domain D  
follows from theorem 6.   

In section 1.6 we research −)(xp Laplace type equation with 
variable exponent p , uniformly degenerating by a small parameter 
into a part of the domain. More exactly in the domain ,2, ≥⊂ nRD n

 
we consider the class of elliptic equations  

( ) ( )( ) 02 =∇∇= − uuxdivuL xp
εε ω                  (22) 

with measurable exponent ( )xp  such that 
( ) 211 pxpp ≤≤<    almost everywhere in ,D               (23) 

and with a positive weight ( ),xεω  that will be determined now.  It is 
assumed that the domain D  was divided by the hyperplane 

{ }∑ == 0: nxx  into the parts ( ) { },0:1 >= nxxDD   
( ) { }0:2 <= nxxDD    and  

( )
( )

( ) ( ].1,0,
,1

,
2

1

∈






∈

∈
= ε

ε
ωε

Dxif

Dxif
x

                     

(24) 

In order to determine the solutions of equation (22) we introduce the 
class of functions 

( ) ( ) ( ) ( ){ },,: 11,1 DLuDWuuDW loc
xp

locloc ∈∇∈=  

where ( )DWloc
1,1

 is a Sobolev class of functions in D  together with 
generalized derivatives of first order.  
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 Under the solution of equation (22) we understand the 
function ( ),DWu loc∈  satisfying the integral identity 

( ) ( ) 02 =∇⋅∇∇∫
−

D

xp dxuux ψωε

                                    
(25) 

on the trial functions ( ).0 DC∞∈ψ  
 Density of smooth functions in the introduced class of 
solutions  ( )DWloc  is of importance. In the paper of V.V.Zhikov and 
Kh.Fan it was shown that if the logarithmic condition 

yx

cypxp

−

≤− 1ln
)()( при 

2
1,, <−∈ yxDyx

               
(26) 

is fulfilled, then for the arbitrary function ( )DWu loc∈  there exists a 
sequence { },ju

 
where ( ),DCu j

∞∈
 

is such that in the arbitrary 

subdomain  DD ⊂
'

 the following relation is fulfilled  

( )
( ) ( )

.lim,0lim
''

'1.1 dxudxuuu
xp

DD

xp

jjDwjj ∫∫ ∇=∇=−
∞→∞→

 

 At present the condition (26) plays a great role in theory of 
Sobolev spaces with variable summability index and in Holder 
continuity of ( )xp -harmonic functions. In his paper Yu.A.Alkhutov 
proves a priori estimation of the Holder norm of solutions of 
equation (22) for condition (26) in the case when 1=ε . In the 
present paper we assume that for  2,1=i  

( ) ( ) ( ) ,2/1,,1ln
0 <−∈

−

≤− yxDyxпри

yx

cypxp i

            

(27) 

in some vicinity of ∑ ,D we have the inequality  
( ) ( ) ( ) ,~ 2Dxforxpxp ∈≥                            (28) 

where x~  is a point symmetric to x  with respect to the hyperplane 
∑.  In the paper of Yu.A.Alkhutov it is shown that subject to the 
condition (27) the set of smooth functions is dense in the class 
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( ).DWloc  Hence it follows that in the integral identity (25) one can use 
trial functions ( )DWloc∈ψ with a compact support in .D  We are 
interested in independence of the Holder exponent α  on a small 
parameter .ε  
 Let )}({ xuε - be a family of solutions of equation  ,0=ε

εuL  
bounded in ∞L  uniformly with respect to ε  on compact subsets D . 
We prove the following statement. 
 Theorem 7. If conditions (23), (24), (27) and (28), are 
fulfilled, then there exists a constant ( ),1,0∈α  independent of ,ε  
such that the family ( ){ }xuε  is compact in ( )'DCα

 in the arbitrary 

subdomain DD ⊂
'

. 
 The second part of the dissertation was devoted to the proof of 
Holder continuity of solutions and Harnack inequality for second 
order elliptic divergent equations uniformly convergent in a small 
parameter into a part of the domain. The basic results of this chapter 
are in the author’s paper [20, 21, 24, 34,36,37,38,39,40,42,45,46,47]. 

In section 2.1 in the domain  ,2, ≥⊂ nRD n
 we consider a 

family of linear elliptic equations   

0)()(
1,

=










∂
∂

∂
∂

= ∑
= j

ij
j

n

ji x
uxxa

x
uL εε ω                            (29) 

assuming that the domain D  is divided by the hyperplane  
}0:{ ==∑ nxx  into the parts }0:{)1( >∩= nxxDD  and =)2(D  

}0:{ <∩= nxxD  with the weight ),(xεω  satisfying condition (24), 
and with a measurable symmetric matrix satisfying the condition of 
uniform ellipticity )},({ xaij   

∑
=

− ≤≤
n

ji
jiij xa

1,

221 .)( ξγξξξγ                   (30) 

Under the solution of equation (29) we understand a function 
)(1

,2 DWu loc∈ , satisfying the integral identity 



24 
 

0)()(
1.

=∫∑
= D

xxij

n

ji
dxuxxa

ji
ϕωε  

on trial functions  )(1
2 DW


∈ϕ  with a compact carrier in .D  
 Let )}({ xuε  be a family of solutions of the equation  

,0=ε
εuL  bounded in ∞L  uniformly with respect to ε  on compact 

subsets D . 
We get the following result. 
 Theorem 8. There exists a constant ),1,0(∈α  dependent only 
on the dimension of the space n  and the constant γ   from condition 
(30) and such that the family )}({ xuε  is compact in )(DC ′α

 in 
arbitrary subdomain DD ⊂′ . 

Section 2.2  was devoted to generalization of theorem 8 for 
the case of p-Laplacian type equation degenerating in a small 
parameter ε  into a part of the domain. In the domain  

,2, ≥⊂ nRD n
 divided by the hyperplane into two parts, we 

consider a family of elliptic  equations 

1,0)( 2

1
>=








∂
∂

∇
∂
∂

= −

=
∑ p

x
uux

x
uL

i

p

i

n

i
εε ω           (31) 

with the weight )(xεω , satisfying condition (24). 
Under the solution of equation (31) we understand a function 

)(1
, DWu locp∈ , satisfying the integral identity 

0)( 2

1
=

∂
∂

∂
∂

∇∫∑ −

= D ii

pn

i
dx

xx
uux ϕωε  

on the trial functions )(1 DWp



∈ϕ  with a compact carrier in .D  
 It is known that for each fixed value ]1,0(∈ε  any solutions of 
equation (31) in the arbitrary subdomain DD ⊂′  belongs to the 
space )(DC ′α

 of functions Holder in D′ . We are interested in 
independence of the exponent α  of ε  . 
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 We consider the family of solutions of the equation )}({ xuε  
bounded in ,0=ε

εuL  uniformly with ∞L  respect to ε  on compact 
subsets D . The base of this section is to prove the following 
statement. 

Theorem 9. There exists a constant ),1,0(∈α  dependent only 
on the dimension of the space n  and p such that the space )}({ xuε  is 
compact in  )(DC ′α

 in arbitrary subdomain DD ⊂′ . 
In section 2.3 we prove the analog of the Harnack inequality 

for non-negative solutions of equation (31). 
If ,1≡εω  then for a non-negative solution of equation (31) in 

the ball DB R ⊂4  we have the classic Harnack inequality  (19).
 We are interested in the analog of the Harnack inequality for 
non-negative solutions with a constant independent of ε . We 
established that the Harnack inequality (19) in the balls centered at 
the hyperplane with a constant independent of ε , does not hold. The 
main goal is to obtain the analog of the Harnack inequality centered 
at .∑  Below we use the denotation from (20). 

Theorem 10. If )(xu is a non-negative solution of equation 
(31) in the ball DB R ⊂4  centered at ∑ , then we have the inequality 
(21) with a constant independent of ε,, Ru . 
 We statement of lemma 8 follows from inequality (21). 

In section 2.4 we also study an equation of the form (31)  in 
the domain nRD ⊂ , 2≥n , in the domain D , divided by a 
hyperplane into two parts with the weight  







∈∈

∈
=

],1,0(,),(
,),(

)(
)2(

)1(

εω

εω
ωε Dxx

Dxx
x                    (32) 

where )(xω  is a weight satisfying the Mackenhoupt pA -condition. 
Furthermore, is assumed that in the open balls  

0RB
 
of rather 

small radius 0R  centered at the hyperplane ∑  for almost all points 
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x  from the semi-sphere }0:{
0

>∩ nR xxB  the following inequality is 
fulfilled:  

0),()( >=′≤ constxx γγωω ,                                     (33)  
where x′  is a point symmetric to x  with respect to the hyperplane  
∑ . In particular, the weights ,αx  where nn <<− α ( 1−p ), and 

α
nx , where 11 −<<− pα  satisfy this condition. Furthermore, every 

weight satisfying the Mackenhoupt
 pA -condition and is even with 

respect to the hyperplane ∑  is appropriate. It is well known that for 
fixed value ]1,0(∈ε  any solution of the equation under consideration 
in an arbitrary subdomain DD ⊂′  belongs to the space )(DC ′α  
functions Holder in D′  We are interested in independence of the 
exponent α  at ε . Below, as earlier, )}({ xuε - is a family of solutions 
of equations ,0=ε

εuL  bounded in ∞L  uniformly with respect to ε  
on compact subsets D . 

Theorem 11.  If the weight ω  satisfies the Mackenhoupt  
pA -condition and condition (33) is fulfilled, then there exists a 

constant )1,0(∈α , dependent only in p , dimension of the space n , 
constant γ  from (33) and the weight ω , such that the family 

)}({ xuε  is compact in )(DC ′α
 of arbitrary subdomain   DD ⊂′ . 

 In section 2.5 we continue to study equation (31) with the 
weight ( ),xεω  satisfying the conditions (32) and (33). 
 Here we give no classic Harnack inequality (19) in the 
spheres centered at the hyperplane with a constant independent of ε . 
 The main result where we use the denotation (20), is in the 
following statement. 

Lemma 4. If the weight satisfies the Mackenhoupt pA -
condition and supposition (33) is fulfilled, then for any 0>q  we 
have the following inequality  
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with the constant  C, independent of  u and R. 
Lemma 5. If the weight satisfies the Mackenhoupt pA - 

condition and supposition (33) is fulfilled, then for any sphere  
−⊂ Rr BB 32 we have the estimation 

∫ −≤∇
rB

r
pp BCrdv ),(ln ωµ  

where the constant  C is independent of  u, r, R and ε . 
Theorem 12. If the weight )(xω  satisfies the Mackenhoupt 

pA - condition and supposition (33) is fulfilled, then for nonnegative 
in the sphere DB R ⊂4  centered at ∑ ,  solution  u  of equation (31) it 
is valid inequality (21), where the positive constant is independent of 

εuRu,  . 
In section 2.6  in the domain nRD ⊂ , 2≥n , divided by the 

hyperplane into two parts, we consider a family of elliptic equations 
(22) with a weight from (24) and exponent )(xp   of the form 





∈
∈ .<<1 

,  ,
  ,=)( (2)

(1)
pq

Dxifp
Dxifqxp

                      
(34) 

For determining the solution we introduce a class of functions related 
to the exponent  )(xp :  

)},(|| ),( :{=)( 1)(1,1 DLuDWuuDW loc
xp

locloc ∈∇∈  
where )(1,1 DWloc  is a Sobolev space of functions locally  summable in 
D  together with first order generalied derivatives. 

Under the solution of equation (22) we understand a function 
)(DWu loc∈ , satisfying the integral identity   

0=||)( 2)( dxuux xp

D

ϕωε ∇⋅∇∇ −∫  

on trial functions )(0 DC∞∈ϕ . 
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Again, as earlier, )}({ xuε
 means a family of solutions of equations 

,0=ε
εuL  bounded in ∞L  uniformly with respect to ε  on compact 

subsets D . 
We prove the following statement. 

Theorem 13.  There exists a constant (0,1)∈α , dependent 
only on the dimension of space n , u  and constants p , q  from 
condition (34), such that the family )}({ xu ε  is compact  in arbitrary 
subdomain .' DD ⊂  

The proof of this result is based on two auxiliary results 
where in DBR ⊂  are the spheres centered at the hyperplane Σ , 

|)(|sup=
0

xuM
RB

, where, 1/40 ≤R , and for /60RR ≤  we assume 

.
)(

2ln=)(,inf=,sup=
6

66

6
6

6
6 RxuM

RmMxumuM
RBRB +−

+−ϑ   

 
Lemma 6.  For any RrR 3< ≤≤ ρ  we have the inequality 
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with a constant 0>),( pna . 
From the above lemma, by means of the Moser method we establish 
the following fact. 
          Lemma 7. We have the estimation 

. ),,,(sup
2

dxMqpnC
RBRB
ϑϑ ∫≤  

 In the course of the proof of the formulated theorem it was 
established that any solution of equation (31) is Holder continuous in 
the domain D  with an exponent dependent only on n , p  and q . 
Note that for every fixed value ( ]1,0∈ε  the Holder continuity of 
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solutions follows from the results of the paper of E.Acerbi и 
N.Fusco4. 

In section 2.7 we prove the Harnack inequality for non-
negative solutions of ),( qp -Laplacian. 

Theorem 14. If conditions (24),(34) are fulfilled and is a 
non-negative solution of equation (22) in the space DB R ⊂8  
centered at the hyperplane ∑ , then in the concentrically sphere RB  
of radius R  the following inequality is valid  

uqpnCRu
R

R BB −
≥+ sup),,(inf  

where in the denotation (20) is used, the constant C  depends only on 
qpn ,, .  

The proof of the theorem 14 is based on the following 
statement where we assume 
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Lemma 8. For any 00 >q  the following inequality is valid 
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In chapter III we consider second order nonuniformly 
degenerating divergent elliptic equations. The basic results of this 
chapter are in the author’s papers [2,3,7,9, 23,41]. 
 In section 3.1 we prove a unique weak solvability in 
anisotropic Sobolev spaces of  the first boundary value problem in 

                                                 
4 Acerbi, E., Fusco, N. A transmission problem in the calculus of variations // Calc. 
Var. Partial Differ. Equ. -1991. v.2, no. 1. -p.1-16. 
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the bounded domain D of diameter d for a second order 
nonuniformly degenerating elliptic equations of the form  
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The matrix of higher coefficients is measurable, symmetric and for 
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In this section we prove the following Sobolev type 
inequality. Below by )(1

, DWp α  
we denote a Banach space of 

functions )(xu  given on D , with the finite norm  
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and by )(1
, DW p α

° -the subspace )(1
, DWp α , the dense subset in which is 

the totality of all functions from )(0 DC∞ . Assume 
{ }nααα ,...,min 1=− , { }nααα ,...,max 1=+ . 
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 Theorem 15. Let the funtions nii ,...,1, =λ  be determined by 

equality (37). Then for any 2
2

2, <<
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p
n

np  and any function 
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the following estimation is valid 
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We will assume that for the minor coefficients of the operator 

L  the following conditions are fulfilled 
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),()( DLxc r∈ .0)( ≤xc                                         (41) 
Here nr > , the constant 3c  is determined in the same way as the 

constant 2c  for 
nrn

rnp
+−

=
)1(

2 . By means of the formulated 

imbedding theorem we establish a unique weak solvability of the 
first boundary value problem. 

Theorem 16. If conditions (36)-(41), are fulfilled, then the 
first boundary value problem (35) is uniquely solvable in the space 
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i

i =∈
λ

 



32 
 

Furthermore, we established the estimation of solutions of 
problem (35). 

Theorem 17. If the conditions of the previous theorem are 
fulfilled, then for the weak solution )(xu  of the first boundary value 
problem (35) the following estimation is valid 
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where the positive constant depends only on ωµ,,,, rdn  and the 
vector α .  

In section 3.2 üe study a continuity modulus at the boundary 
point of the solution of the Dirichlet problem for homogeneous 
equation Lu=0 from (35) without minor coefficient with a boundary 
condition  ϕ=u  on the boundary of the domain D with a boundary 
function ϕ  continuous on D∂ . Below, )(ky

Rε , where 
0,0, >>∈ kRRy n , means a closed ellipsoid  
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We introduce a notion of capacity of the compact  К, strictly 

internal with respect to the fixed ellipsoid Σ .  
Let { 1,)( 1
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The number )(inf)(
)(

uJKcap
KVu Σ∈Σ

Σ

=  is called a capacity of the 

compact K  with respect to Σ , generated by the operator L . In the 
following statement Σ  means the ellipsoid )1(0

1ε and it is assumed 
that the boundary of the domain D contains an origin of coordinates. 

Theorem 18. If )(1
,2 DWu α∈  is a weak solution of the 

Dirichlet problem for the equation 0=Lu , whose coefficients satisfy 
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condition (36) and the boundary function ϕ  vanishes at the 
intersection of  D∂  with Σ , then we have the estimation 
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 Section 3.3 is devoted to the estimation of the maximum of 
the modulus of eigen functions of the Dirichlet problem for elliptic 
equations containing a big parameter on a part of the domain. More 
exactly, in the bounded Lipschits domain nRD ⊂ , 2≥n , divided by 
the hyperplane into two parts }0:{)1( >∩= nxxDD  and 

0}< :{=(2)
nxxDD ∩ , we consider eigen-functions of the problem 

,0,)( ==− ∂DuuxuL εε λω                                 (42) 
for the operator εL  of from (29), whose coefficients satisfy condition 
(30) with the weight  
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Eigen functions are normed by the equality 
∫ =
D

dxu .12
εω                                       (44) 

Below mu  means the eigen function of problem (42) responding to 
the eigen value mλ . 
 Theorem 19. If conditions  (30) and (43), are fulfilled, then 
in the assumption (44) for the eigen functions of problem (42) we 
have the estimation 
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∈

 

 with the constant C , dependent only on n , domain D  and constant 
γ  from  (30). 
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In chapter IV we consider nonuniformly degenerating second 
order parabolic equations. The main results of this chapter are in the 
author’s papers [1,4,5,6,32,39]. 

In section 4.1 we study a class of second order, divergent 
structure parabolic equations with nonuniform power degeneration. 
Unique weak solvability of the first boundary value problem for such 
equations in Sobolev weight spaces is proved.. 
 Below nE  and 1+nR are Euclidean spaces of the points  

),...,( 1 nxxx =  and ),,...,(),( 1 txxtx n=  respectively, nE⊂Ω  is a 
bounded domain with the boundary Ω∈Ω∂ 0, , 0T  and T  are 
positive numbers ),( 0 TTQT −×Ω= .Consider in the cylinder TQ , 
with bounded base  Ω  the first boundary value problem  
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under the assumption that ),( txaij is a symmetric matrix with the 

elements measurable in TQ  and for TQtx ∈),( , nE∈ξ  it is fulfilled 
the condition of uniform ellipticity 
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The solvability of problem (45)–(46) is studied in the space 
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 that is determined by the completion in the norm 
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of the set of infinitely differentiable in the closure TQ  functions 
equal to zero near TS . Below  ,2<+α  is determined as in (38). 
We get the following result. 

Theorem 20. If the coefficients of the operator L satisfy 
condition (47) and ,2<+α  then the first boundary value problem 

(45)-(46) is uniquely weakly solvable in the space )(
0,1

,2 TQW α



 for all 
)(2 TQLf ∈ and for the solution of this problem the following 

estimation is valid 
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Section 4.2 is devoted to Holder continuity of the solution of 

the homogeneous parabolic equation (45) in the bounded domain 
1+⊂Ω nR  under the additional assumption 

ni
ni ,...,1,

1
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Preliminarily, by ρΩ  we denote the totality of the points ( ) ,',' Ω∈tx  
for which the cylinder  { }'',':),( 2 tttxxtx <<−<− ρρ  is contained 
in Ω . The following a priori estimation of the Holder norm in the 
vicinity of the degeneration is proved for weak solutions of the 
indicated equation. 

Theorem 21. The weak solution of homogeneous equation 
(45), whose coefficients satisfy conditions (47), (48) are Holder 
continuous in  Ω  and for any 0>ρ  the following inequality is valid 

,
)()( ΩΩ

≤
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uHu ρλ  

wherein λ   depends on nαα ,...,1 ,n , while H - in addition on ρ .  
In section 4.3 the Harnack inequality in the vicinity of the 

degeneration point is proved for weak non-negative solutions of the 
homogeneous equation from the previous section. 
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To formulate the obtained result, we assume 
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 Theorem 22. If и is a non-negative solution of homogeneous 
equation (45) in the cylinder P(4R), whose coefficients satisfy 
condition (47) and (48), then we have the Harnack inequality of the 
form 
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 with the constant c, independent of  u and R. 
 In section 4.4 the results of section 4.3 are generalized to 
homogeneous non-uniformly degenerating equations of the form (45) 
under more general requirements on the functions ),( txiλ ni ,...,1, =  
from (47). More exactly, it is assumed that the coefficients of 
equation (45) in the domain under consideration satisfy condition 
(47), wherein  

  
( ),)(),( txgtx ii += ρλ

 
( )∑

=
=

n

i
ii xx

1
,)( ωρ
                  

(49) 

where ( ) .,...,2,1;)()( 2

21

ni
z

zzg i
i ==

−ω  The functions )(tiω  strictly 

monotonically increase, ,0)0( =iω )(1 ti
−ω , is a function inverse to 

the function  )(tiω  and for ,...,2,1=i  
),(2)2( tt ii ωω ≤                                             (50) 

tcdz
z
z

t
t

qt
i

q
i

i

1

)(

0

1 1

)()(
≤
















∫
−− ω ωω                            (51) 



37 
 

with some constant  nq >  and positive constant  1c  independent of 
.t  A simple example of the function iω  is the function itti
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We get the following result 

Theorem 23. If u  is a non-negative solution of equation (45) 
in the cylinder  P(4R), whose coefficients satisfy conditions (47)-(48) 
and (50)-(51), then the we have the Harnack inequality 
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 In section 4.5 the Harnack inequality obtained in section 4.4, 
is used to prove the Harnack continuity of weak solutions of the 
homogeneous equation 
 
 
  
 
 
 
 
 
 
 



38 
 

Conclusions 
In the dissertation the following basic results were obtained: 

Linear elliptic equations with a partial Mackenhoupt weight was 
studied. Holder continuity of solutions was proved.  
2. p -Laplacian type nonlinear elliptic equations with a partial 
Mackenhoupt weight were considered. Holder continuity of solutions 
and Harnack inequality were proved. 
3. −)(xp Laplacian type elliptic equations degenerating by a small 
parameter into a part of the domain were studied, Holder continuity 
of solutions was proved.  
4. p -Laplacian type linear and nonlinear elliptic equations 
degenerating by a small parameter into a part of the domain were 
considered. Harnack inequality and Holder continuity of solutions of 
such weightless equations and equations with a Mackenhoupt weight 
were proved. p -Laplace equation with variable two-phase index p 
when the interphase is a hyperplane, was considered separately.. 
5. Linear nonuniformly degenerating elliptic equations were studied. 
Sovability of the Dirichlet problem for a class of the Dirichlet 
problem for a class of second order nonuniformly degenerating 
elliptic equations was proved. 
6.The estimation of continuity of a boundary point of the solution of 
the Dirichlet problem for second order nonuniformly degenerating 
elliptic equations was given. 
7. The estimation of the modulus of the first eigen function uniform 
by the parameter was found for a second order linear elliptic equation 
containing a large parameter on a part of the domain. 
8.Weak solvability of the first boundary value problem in Sobolev 
weight spaces was proved for linear nonuniformly degenerating 
divergent parabolic equations. 
9.The Harnack inequality for the solution of nonuniformly 
degenerating second order divergent parabolic equations was proved. 
10.The Holder inequality of solutions of second order nonuniformly 
degenerating parabolic equations in the divergent form was shown. 
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