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GENERAL DESCRIPTION OF WORK 

 

 

Relevance of the topic. Beginning in the mid-19th century, 

mathematical methods began to be used in economic research. The 

creation of mathematical models of the economy served as an 

impetus for the development of a new field of mathematics - 

mathematical economics. The first works on the study of economic 

processes using mathematical apparatus appeared at the end of the 

19th century and belonged to L. Walras, V. Pareto and others. The 

further development of these ideas is associated with the names of V. 

Leontiev and J. Neumann, in whose works simple multidimensional 

models were developed economic dynamics. Subsequently, in the 

works of such mathematicians as D. Gale, L.V. Mackenzie, H. 

Nikaido, L.V. Kantorovich et al., these ideas were significantly 

advanced in the study of multi-product models of economic 

dynamics. F. Ramsay, J. Keynes, R. Solow, and others also made a 

great contribution to the development of mathematical models of 

economics. 

In the first half of the twentieth century, mathematical 

economics had already emerged as a separate branch of mathematics. 

Intensive research in various areas of mathematical economics 

continues to this day. 

When studying models of economic dynamics, of particular 

interest are the study of the behavior of trajectories, the properties of 

the efficiency of trajectories, determining the growth rate of the 

model, solving some optimization problems, etc. In the course of 

studying various models and their modifications, various authors 

managed to develop approaches and methods applicable to many 

models of economic dynamics. A unified theory of models of 

economic dynamics was created and it is reflected in many 

monographs and textbooks. 

This research work also lies within the framework of these 

problems and is devoted to the study of some theoretical problems of 

mathematical economics, such as the study of the properties of 

trajectories of models of economic dynamics of the Neumann type 
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with discrete time, the study of the dependencies of certain 

indicators, the application of production functions of various types to 

the study of production processes, the determination of rates growth 

and equilibrium conditions in specific models, etc., which make the 

topic of the dissertation relevant. 

It should be noted that the results of studies of economic 

dynamics models are not only theoretical in nature, but can also be 

used to build specific production models. 

In the proposed work, the main objects of research are one-

sector and two-sector models of economic dynamics of the Neumann 

type with discrete time. Models of this type are extremely aggregated 

models of the economy, but at the same time they reflect the 

dynamics of relationships between macro indicators and are widely 

used in the study of patterns of economic development. 

The advantage of such models is that they can participate in 

more complex economic and mathematical models as a component, 

and the results obtained from the study of such models can be used in 

the study of more complex dynamic systems. This type of model was 

studied by F. Ramsey, M. Brown, L. Johansen, E. Phelps, Z. K. 

Arrow, N. N. Moiseev, V. L. Makarov, A. M. Rubinov and others. 

The object of study in the mentioned works was the problem of 

the existence of an equilibrium state of trajectories, finding optimal 

stationary trajectories in the sense of one or another optimality 

criterion, studying the main properties of trajectories, etc. 

As an example, we can point out the principle of differential 

optimization by L.V. Kantorovich, as well as the principle of 

maximum use of the potential capabilities of the economy by A.M. 

Rubinov. 

Object and subject of research. The object of the study is 

discrete one-sector and two-sector models of economic dynamics of 

the Neumann type, which are described using multi-valued 

mappings. A wide range of issues are studied, including the behavior 

of effective trajectories, the study of the main properties of 

trajectories, equilibrium conditions, growth rates, the dynamics of the 
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interrelations of various macro-indicators, such as consumption, 

labor, fixed assets, national wealth, etc. 

In this work, these issues are studied using optimization 

problems using the apparatus of production functions, in particular 

the Cobb-Douglas, Leontief production functions and the function 

with constant elasticity of substitution (CES). 

Goal of the work. The main goal of the work is to study some 

problems of discrete models of economic dynamics of the Neumann 

type, incl. 

- study of the behavior of trajectories in one-sector and two-

sector models specified by superlinear multivalued mappings in 

finite and infinite time intervals. 

- determination of characteristic prices and growth rates of the 

models under consideration. 

- determination of types of equilibria in special Neumann-type 

models. 

- determination of the degrees of dependence of some 

indicators in one-sector and two-sector models. 

- solving some optimization problems, including maximizing 

total consumption, total output and national wealth 

expenses. 

The main provisions of the dissertation submitted for 

defense. 

- effective trajectories of models that allow characterization 

have been studied and types of effective trajectories have been found, 

- the principle of optimality is proposed, according to which 

consumption is chosen so that the trajectory with a given labor force 

is efficient. 

- the limiting behavior of trajectories under a strict equilibrium 

state has been studied, 

- for a single-sector model, the dependence of the consumption 

function on the type of production function is determined, 



6 

 

- the conditions for maximizing total consumption, total output 

and total national wealth are determined, 

- necessary and sufficient conditions for the existence of a 

solution to the consumer problem are found. 

- a theorem has been proven about the existence of a solution to 

the consumer problem without losses with a fixed budget, 

- using a lossless mechanism, a trajectory was constructed in 

one Neumann-type model and the Neumann equilibrium state was 

determined, 

- under certain conditions for the two-sector model, Neumann 

growth rates, Neumann prices and Neumann equilibrium states are 

determined 

- types of equilibria in the two-sector model are determined, 

- necessary and sufficient conditions for the existence of an 

equilibrium state in a two-sector model were found, 

- the uniqueness of Neumann prices in equilibrium has been 

proven 

- a Neumann face was constructed for the model, 

- models were built using graph theory with and without 

transport 

Scientific novelty. For a special model of the Neumann 

type, characteristic prices and growth rates of national wealth are 

determined. The problem of optimal labor distribution in a multi-

industry model has been solved. Using the apparatus of convex 

analysis, a connection has been established between characteristic 

prices and the super differential of the corresponding functional in 

a Neumann-type model. 

For a special model of the Neumann type, conditions for the 

efficiency of trajectories are found and the principle of optimality 

of trajectories is established. 
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The problems of determining the dependence of the volume 

of consumption on the number of labor employed in production 

and on the means of production for Cobb-Douglas production 

functions and functions with constant elasticity of substitution 

(CES) are also studied. 

Necessary and sufficient conditions for the existence of an 

equilibrium state without losses are obtained and the Neumann 

equilibrium state is determined. 

For the two-sector model Z2, the Neumann growth rate and 

Neumann equilibrium prices are determined, and T - step effective 

trajectories are also constructed. 

Research methods. The main research methods are 

methods of mathematical modeling of economic processes. In this 

case, methods of mathematical analysis, the theory of superlinear 

multivalued mappings, the theory of discrete dynamic systems, 

mathematical programming, graph theory, convex analysis, etc. 

are widely used. 

Theoretical and practical value. The results obtained in 

the dissertation work are mainly theoretical in nature. But some 

results can be applied when studying specific economic models. 

Approbation of work. The results of the dissertation were 

presented at a seminar at the department of “Mathematical theory 

of modeling control systems” of St. Petersburg State University 

under the guidance of prof. V.F. Demyanov, at the seminar of the 

Institute of Socio-Economic Problems of the USSR Academy of 

Sciences, Leningrad, under the guidance of prof. A.M. Rubinov, 

at the seminar of the Institute of Applied Mathematics at Baku 

State University under the leadership of academician. F.A. Aliyev,  

at the seminar at the department of “Mathematical Cybernetics”of 

Baku State University under the leadership of prof. 

K.B.Mansimov and also reported at the following scientific 

conferences: 

- Scientific conference dedicated to the 90th anniversary of 

academician M.L. Rasulov, Baku, 2006. 

- Scientific conference dedicated to the 100th anniversary of 

Academician A. Huseynov, Baku, 2007. 
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- Scientific conference dedicated to the 90th anniversary of 

Professor G.G. Akhmedov, Baku, 2007. 

- Republican scientific conference, Sumgait, 2007. 

- The 1st International Conference on Control and 

Optimization with Industrial Applications COIA-2005, Baku, 

2005. 

- The 2nd International Conference on Control and 

Optimization with Industrial Applications COIA-2008, Baku, 

2008. 

- The 3rd International Eurasian Conference on 

Mathematical Science and Applications IECMSA-2014, Vienna, 

Austria, 2014. 

- The 4th International Eurasian Conference on 

Mathematical Science and Applications IECMSA-2015, Athens, 

Greece, 2015. 

- The 5th International Eurasian Conference on 

Mathematical Science and Applications IECMSA-2016, Belgrad, 

Serbia, 2016. 

- The 6th International Eurasian Conference on 

Mathematical Science and Applications IECMSA-2017, 

Budapest, Hungary, 2017. 

- The 6th International Conference on Control and 

Optimization with Industrial Applications COIA-2018, Baku, 

2018. 

- The 7th International Conference on Control and 

Optimization with Industrial Applications COIA-2020, Baku, 

2020. 

- The 8th International Conference on Control and 

Optimization with Industrial Applications COIA-2022, Baku, 

2022 

Publications. 34 works have been published on the topic of 

the dissertation, including 21 articles in various journals, a list of 

which is presented at the end of the abstract. 

Name of organization where was performed the 

work.The work was performed at the Institute of Applied 

Mathematics at the Baku State University. 
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Structure and scope of work. The dissertation consists of 

an introduction, six chapters, main results and a list of references. 

The total volume of the work is 254903 characters (table of 

contents- 2863 characters, introduction- 10334 characters,   

chapter I- 21000  characters,   chapter II- 65957 characters, 

chapter III- 25766  characters, chapter IV -51442 characters, 

chapter V- 49435 characters, chapter VI- 26437 characters, 

rezults-1499  characters). Number of characters in the abstract is 

64575 . 
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SUMMARY OF THE DISSERTATION  

 

 

The dissertation consists of an introduction, six chapters, main 

results and a list of references. 

The introduction provides a rationale for the relevance and 

degree of development of the dissertation topic. The main directions 

of development of the theory of mathematical models of economics 

are outlined. The purpose and objectives of the research are 

formulated. A brief overview of results in the study area is provided. 

Chapter I presents the basic concepts and definitions used in 

the dissertation work. It consists of seven paragraphs. The first 

paragraph presents the basic concepts from the theory of multivalued 

mappings. In this case, the main attention is paid to the description of 

superlinear multivalued mappings and their properties. The second 

paragraph of this chapter is devoted to the description of discrete 

dynamic systems. Particular attention is paid to special dynamical 

systems defined using superlinear multivalued mappings. An 

economic interpretation of a discrete dynamic system is given. 

As is known, processes occurring in the economy are described 

by technological mappings. 

The third paragraph of the first chapter is devoted to 

technological mappings of economic dynamics models studied in this 

work. 

The fourth paragraph of this chapter describes models of 

various types that are often encountered in practice, including models 

of the Leontief and Neumann types. 

The fifth paragraph provides a description of the equilibrium 

mechanisms for constructing trajectories. This approach is widely 

used in the study of models of economic dynamics, and the choice of 

specific consumption plays a significant role. 

The sixth paragraph is devoted to models of expanded 

reproduction, which were introduced by A, M, Rubinov. They 

describe the interaction of several sectors, each of which processes 

its resources into finished products. And finally, in the seventh 

paragraph, the definition of the Neumann growth rate and the 
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Neumann equilibrium vector is given. A description of the trajectory 

is given that admits the characteristic, 

Chapter II consists of 9 paragraphs. The first paragraph 

provides a definition of a Neumann type model and considers a 

modification of V.L. Makarov’s model  𝑍(𝜔)1. Let there be 𝑛 

technology in the economy. The technology 𝑖 is described by the 

pair(𝐹𝑖 , 𝑣𝑖) , where𝐹𝑖 is the production function and  𝑣𝑖 is the 

coefficient of preservation of funds. The volume of fixed assets and 

the size of the workforce are denoted by and respectively. Thus, the 

model 𝑍 describing the joint functioning of 𝑛 technologies is given 

by the sequence  (𝐹1, 𝑣1;   𝐹2, 𝑣2;  … ;  𝐹𝑛, 𝑣𝑛). The state of the 

economy in the model is characterized by the vector  𝑥 =
(𝐾1, … , 𝐾𝑛, 𝐿1, … , 𝐿𝑛, 𝜔1, … , 𝜔𝑛). Here 𝜔𝑖 is specific consumption in 

𝑖 - production. A transition from a state 𝑥𝑡 at an instant to a state 

𝑥𝑡+1at an instant  𝑡 + 1 is possible if it satisfies the following system 

of relations: 

𝐾𝑡+1
𝑖 ≤ 𝑣𝑖𝐾𝑡

𝑖 + 𝐼𝑡+1
𝑖 ,        𝐼𝑡+1

𝑖 ≥ 0,                           (1) 

𝐼𝑡+1
𝑖 + 𝜔𝑡+1

𝑖 𝐿𝑡+1
𝑖 ≤ 𝐹𝑖(𝐾𝑡

𝑖 , 𝐿𝑡
𝑖 ),        (𝑖 = 1, 𝑛̅̅ ̅̅ ̅), 

Here  𝐼𝑡+1
𝑖  are investments. Let's fix the sequence 𝜔 =

(𝜔1, … , 𝜔𝑡, … ) and consider the model 𝑍(𝜔). 
In what follows, we consider trajectories 𝑥𝑡 =

(𝐾𝑡
1, … , 𝐾𝑡

𝑛, 𝐿𝑡
1, … , 𝐿𝑡

𝑛) for which the inequalities are valid for each  𝑡 
𝐼𝑡+1
𝑖 = 𝐾𝑡+1

𝑖 − 𝑣𝑖𝐾𝑡
𝑖 > 0,        𝐿𝑡+1

𝑖 > 0 

We will call such trajectories with the property (A). Let be a 

𝑃0, … , 𝑃𝑡 characteristic of some trajectory 𝑥0, … , 𝑥𝑡 , …. Let's put 

𝑞𝑝𝑡+1(𝑥) = max
𝑦∈𝑎(𝑥)

𝑃𝑡+1(𝑦) ,       𝑥 ≥ 0. 

Lemma 2.1.1. Let 𝑞𝑝𝑡+1(𝑥) = max
𝑦∈𝑎(𝑥)

𝑃𝑡+1(𝑦), where 𝑥 ≥ 0, 

then the functional has the following form 

𝑞𝑝𝑡+1 = 𝑣1𝑃𝑡+1
1 𝐾1 +⋯+ 𝑣𝑛𝑃𝑡+1

𝑛 𝐾𝑛 + 𝑐1𝐹1(𝐾
1, 𝐿1) + ⋯+ 

+𝑐𝑛𝐹𝑛(𝐾
𝑛, 𝐿𝑛), 

                                                 
1Makarov V.L. On dynamic models of the economy and the development of ideas 

L.V. Kantorovich // Economics and mathematical methods, 1695, vol. 1, no. 5, art. 

10-24. 
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where  𝑐𝑖 = max (𝑃𝑡+1
𝑖 ,

𝑞𝑡+1
𝑖

𝜔𝑡+1
𝑖 ) . 

Lemma 2.1.2. The superdifferential 𝜕𝑞𝑝𝑡+1 of the 

functional 𝑞𝑝𝑡+1 has the form 

𝜕𝑞𝑝𝑡+1 = (𝑣1𝑃𝑡+1
1 , … , 𝑣𝑛𝑃𝑡+1

𝑛 , 0, … , 0) + 𝑐1𝜕𝐹̅1 +⋯+ 𝑐
𝑛𝜕𝐹̅𝑛. 

Since the trajectory𝑥𝑡 admits the characteristic 𝑃𝑡, the 

following relations hold: 

1. From Lemma 2.1.2 it follows that there are for which 

𝑃𝑡 ∈ 𝜕𝑞𝑝𝑡+1ℎ
𝑖 = (ℎ𝑖

𝑖 , ℎ𝑖+𝑛
𝑖 ) ∈ 𝜕𝐹𝑖, 

𝑃𝑡 = (𝑣1𝑃𝑡+1
1 + 𝑐1ℎ1

1, … , 𝑣𝑛𝑃𝑡+1
𝑛 + 𝑐𝑛ℎ𝑛

𝑛, 𝑐1ℎ1
1, … , 𝑐𝑛ℎ2𝑛

𝑛 ); 

2. 𝑃𝑡(𝑥𝑡) = 𝑃𝑡+1(𝑥𝑡+1). 

Let be an (𝑥𝑡) effective trajectory of the model 𝑍(𝜔) that 

admits the characteristic 𝑃𝑡 and has the property (𝐴). Let's consider 

the simplest single  𝑛-product models of the Neumann type 

𝑍𝑖(𝜔𝑖) = (
𝑏𝑡+1
𝑖

𝑏𝑡
𝑖
𝐹𝑖 ,
𝑏𝑡+1
𝑖

𝑏𝑡
𝑖
𝑣𝑖 , 𝜔𝑡

𝑖),     (𝑖 = 1, 𝑛̅̅ ̅̅ ̅) 

and the corresponding growth rates of these models will be denoted 

by 𝛼𝑡
𝑖 =

𝑏𝑡+1
𝑖

𝑏𝑡
𝑖 max

𝜂>0

𝑣𝑖𝜂+𝑓𝑖(𝜂)

𝜂+𝜔𝑡
𝑖 , where 𝜂 =

𝐾

𝐿
𝑓𝑖(𝜂) = 𝐹𝑖(𝜂, 1). 

Let's denote ℓ𝑡 = (𝑏𝑡
1, … , 𝑏𝑡

𝑛−1, 1, 𝑏𝑡
1𝜔𝑡

1, … , 𝑏𝑡
𝑛−1𝜔𝑡

𝑛−1, 𝜔𝑡
𝑛). 

Let us further 𝑏𝑡
𝑖 assume that all the parameter 𝑏𝑡+1

𝑖  in the 

period [𝑡, 𝑡 + 1] are known and 𝑥 = (𝐾1, … , 𝐾𝑛, 𝐿1, … , 𝐿𝑛)is the state 

of the economy at the moment  𝑡, which transitions to the state 𝑦 =

(𝐾1, … , 𝐾𝑛, 𝐿1, … , 𝐿𝑛). Since, represent the means of production and 

the consumption 𝑏𝑡
𝑖𝜔𝑡

𝑖 f und in the i-th production at the moment 𝑡 for 

the state 𝑥 = (𝐾1, … , 𝐾𝑛, 𝐿1, … , 𝐿𝑛) (in value terms), then the values 

ℓ𝑡(𝑥) =∑𝑏𝑡
𝑖(𝐾𝑖 + 𝜔𝑡+1

𝑖 𝐿𝑖)

𝑛

𝑖=1

и  ℓ𝑡+1(𝑦) = 𝜓𝑡(𝑥) = 

=∑𝑏𝑡+1
𝑖 (𝑣𝑖𝐾

𝑖 + 𝐹𝑖(𝐾
𝑖, 𝐿𝑖))

𝑛

𝑖=1

 



13 

 

can be interpreted as national wealth at moments 𝑡 and 𝑡 + 1 . 

Theorem 2.1.1. For trajectories with the property (𝐴) 

𝛼𝑡
1 = 𝛼𝑡

2 = ⋯ = 𝛼𝑡
𝑛 = 𝛼𝑡 . 

The second paragraph of Chapter 2 is devoted to the study of 

effective trajectories of the model 𝑍(𝜔). Let us consider the 

trajectory (𝑥𝑡) of the mode𝑙 𝑍(𝜔), admitting the characteristic 𝑝𝑡 =
𝑝𝑡
𝑛ℓ𝑡, where 

ℓ𝑡 = (𝑏𝑡
1, … , 𝑏𝑡

𝑛−1, 1, 𝑏𝑡
1𝜔𝑡

1, … , 𝑏𝑡
𝑛−1𝜔𝑡

𝑛−1, 𝜔𝑡
𝑛). 

Theorem 2.2.2. 1) Let the 𝑥𝑡 = 𝐴𝑡𝑥̅𝑡   effective trajectory of the 

model 𝑍(𝜔) emanate from a strictly positive point 𝑥0. Then a) the 

sequence 𝑥𝑡
𝑛 is an effective trajectory of a Neumann type 

model  𝑍𝑛(𝜔𝑛), defined by the set (𝐹𝑛, 𝑣𝑛, 𝜔𝑡
𝑛), b) if   𝛾𝑡

𝑖𝐾̅𝑡+1
𝑖 ≥ 𝑣𝑖𝐾̅𝑡

𝑖 

, then (𝑥𝑡
𝑖) is an effective trajectory of the model 

𝑍𝑖(𝜔𝑖) = (
𝑏𝑡+1
𝑖

𝑏𝑡
𝑖
𝐹𝑖,
𝑏𝑡+1
𝑖

𝑏𝑡
𝑖
𝑣𝑖 , 𝜔𝑡

𝑖) (𝑖 = 1, 𝑛̅̅ ̅̅ ̅) , 

2) If (𝑥𝑡
𝑖) is the effective trajectory of the model  𝑍𝑖(𝜔𝑖) 

emanating from the point 𝑥0
𝑖 > 0, then (𝑥𝑡) is the effective trajectory 

of the model 𝑍(𝜔). 
In the third paragraph of Chapter II, it is assumed that the 

vector 𝐿𝑡 = (𝐿𝑡
1, … , 𝐿𝑡

𝑛), 𝐿𝑡
𝑖 ≥ 0, ∑ 𝐿𝑡

𝑖 = 1𝑛
𝑖=1  is given, where 𝐿𝑡 is 

the total number of the workforce. Based on the set 𝜔 =
(𝜔𝑡

1, … , 𝜔𝑡
𝑛), a model 𝑍(𝜔) is built under the assumption that 𝑥𝑡 =

(𝐾𝑡
1, … , 𝐾𝑡

𝑛, 𝐿𝑡
1, … , 𝐿𝑡

𝑛) its state lies on the effective trajectory of the 

model, which has characteristic. Using a well-known formula, the 

wage rate 𝑃𝑡 is established and the state of the model 𝑍(𝜔) is 

determined. 

 Let us introduce the simplest 2𝑛 one-sector models, 

𝑍𝑖(𝐿𝑖), 𝑍𝑖(𝜔𝑖) 𝑖 = 1, 𝑛̅̅ ̅̅ ̅, specified by the same set 

(
𝑏𝑡+1
𝑖

𝑏𝑡
𝑖 𝐹𝑖 ,

𝑏𝑡+1
𝑖

𝑏𝑡
𝑖 𝑣𝑖 , 𝜔𝑡

𝑖), in which the coefficients 𝑏𝑡
𝑖, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅, are 

determined by the characteristic prices 𝑃𝑡  of the model 𝑍(𝜔) state 𝑥𝑡. 

In the model  𝑍𝑖(𝐿𝑖), 𝐿𝑡 
𝑖  is considered known, and in the 
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model 𝑍𝑖(𝜔𝑖), specific consumption 𝜔𝑡
𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅ ̅ is. The controlled 

parameter in is  𝜔𝑡
𝑖 . An optimality principle is proposed, according to 

which it is chosen so that a trajectory (𝐾𝑡, 𝐿𝑡) with a given labor 

force  𝐿𝑡 would be effective in the simplest model (𝐹, 𝑣, 𝜔), which is 

obtained for a given  𝜔 . 

Using the above optimality principle, it is possible, on the one 

hand, to determine the state of the model 𝑍(𝐿), and on the other, the 

state of the effective trajectory of the mode 𝑍(𝜔). Let us prove the 

last statement. 

A sequence (𝐾𝑡
𝑖, 𝐿𝑡

𝑖 ) with a fixed labor force 𝐿𝑡
𝑖  when selected 

as a function o 𝜔𝑡
𝑖  is the efficient trajectory 𝐿𝑡

𝑖  of the model 𝑍𝑖(𝜔𝑖). 

The fourth paragraph of Chapter II discusses one method of 

distributing labor. It is assumed that the total number of labor force is 

constant and equal to one. Let's consider the case when the wage rate 

in each of the industries is the same, i.e. 𝜔𝑡
1 = 𝜔𝑡

2 = ⋯ = 𝜔𝑡
𝑛 = 𝜔𝑡. 

Thus, it is required to find such a distribution of the total 

number of labor forces 𝐿𝑡+1, 𝑡 = 1, 2, …, into labor 

forces 𝐿𝑡+1
𝑖 (∑ 𝐿𝑡+1

𝑖𝑛
𝑖=1 = 1), that  

𝜔𝑡+1
1 (𝐿𝑡+1

1 ) = 𝜔𝑡+1
2 (𝐿𝑡+1

2 ) = ⋯ = 𝜔𝑡+1
𝑛 (𝐿𝑡+1

𝑛 ) . 
Theorem 2.4.1. The equation 𝐿𝑡+1(𝜔) = 1 has a solution if 

and only if lim
𝜔→𝑠̅

𝐿𝑡+1(𝜔) < 1; This solution is the only one. 

 Consequence. If  𝐹𝑖(𝑖 = 1, 𝑛̅̅ ̅̅ ̅) the Cobb-Douglas function, 

then the conditions of Theorem 2.4.1 are always satisfied 𝐹𝑖(𝑖 =

1, 𝑛̅̅ ̅̅ ̅). 

Theorem 2.4.2. a) If the initial wage rate𝜔1 belongs to the 

interval [𝜔̅1, 𝜔̅2], then for all 𝜔𝑡 ∈ [𝜔̅
1, 𝜔̅2] and 𝑡, at the same time, 

for all 𝜔𝑡 → 𝜔̅2, 𝛽𝑡
2 > 1, 𝛽𝑡

1 < 1 , lim 𝐿𝑡
1 = 1, lim 𝐿𝑡

2 = 0, 

b) if 𝜔1 < 𝜔̅1, then 𝑇 there is a moment in time such that 𝜔̅1 ≤

𝜔𝑇 ≤ 𝜔̅
2, and increase, (0, 𝜔̅1], 
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c) 𝜔1 > 𝜔̅2 if 𝜔𝑡 > 𝜔̅2 and for all 𝑡, then decreases, 𝜔𝑡 

tending to  𝜔̅2, and  𝐿1 = 0. 

Theorem 2.4.3. a) If 𝜔1 ∈ [𝜔̅
1, 𝜔̅𝑛], then for all 𝜔𝑡 ∈ [𝜔̅

1, 𝜔̅𝑛] 

and 𝑡, 𝜔𝑡 → 𝜔̅𝑛, 𝐿𝑡
𝑛 → 1, 𝐿𝑡

𝑖 → 0, 𝑖 < 𝑛, 

b) If 𝜔𝑡 < 𝜔̅
1, then there 𝑇 is a moment in time, and  𝜔̅1 <

𝜔𝑇 > 𝜔̅
𝑛 increases 𝜔𝑡 < 𝜔̅1𝑇 ∶ 𝜔̅1 < 𝜔𝑇 < 𝜔̅

𝑛, 𝜔𝑡 in (0, 𝜔̅
1], 

c) If 𝜔1 > 𝜔̅
𝑛 and  𝜔𝑡 > 𝜔̅

𝑛 for all 𝑡, then decreases, 𝜔𝑡 

tending to 𝜔̅𝑛. 

In the second paragraph, the total labor force 𝐿 = 1 in the 

model 𝑍 distributed between two industries so as to maximize total 

consumption, while the constant elasticity of substitution (CES) 

functions is considered as production functions: 

𝐹𝑖(𝐾𝑡
𝑖, 𝐿𝑡

𝑖 ) = (𝐴𝑖𝐾𝑡
−𝜌𝑖 + 𝐵𝑖𝐿𝑡

−𝜌𝑖)
−
1

𝜌𝑖 ,    𝑖 = 1,2  

where  𝜌𝑖 > 0. So, we consider the problem 

𝑊𝑡+1
1 (𝐿𝑡+1

1 ) +𝑊𝑡+1
2 (𝐿𝑡+1

2 ) → 𝑚𝑎𝑥 

given that 𝐿𝑡+1
1 + 𝐿𝑡+1

2 = 1. Here 𝑊𝑡+1
𝑖 (𝐿𝑡+1

𝑖 )is the consumption 

fund in 𝑖 - production. 𝐿𝑡+1
𝑖  can be expressed as a function of a 

variable 𝜂𝑡+1
𝑖 : 

𝐿𝑡+1
𝑖 (𝜂𝑡+1

𝑖 ) =
𝑀𝑡
𝑖

Φ𝑖(𝜂𝑡+1
𝑖 )

 ,                                             

that's fair 

𝑊𝑡+1
𝑖 (𝐿𝑡+1

𝑖 ) = 𝑀𝑡
𝑖
𝑓𝑖(𝜂𝑡+1

𝑖 ) − 𝜂𝑡+1
𝑖 𝑓𝑖

′(𝜂𝑡+1
𝑖 )

𝑣𝑖𝜂𝑡+1
𝑖 + 𝑓𝑖(𝜂𝑡+1

𝑖 )
 ,     

Lemma 2.5.1. Let the following conditions be satisfied 

a) 𝜂̃2 > 𝜂̅2, 

𝑏)   𝐿𝜏
2 ≤ 𝐿̃𝜏

2 for some point in time 𝜏. Then 𝐿̃𝜏+1
2 ≤ 𝐿̃𝜏

2     
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Comment. It is easy to check that the condition is satisfied if 

𝜂̃ > 𝜂̅ 

𝐴 ∈

[
 
 
 
 

1

((1 − 𝑣)(1 + 𝜌)
1+

1

𝜌)

𝜌 ,
1

(1 − 𝑣)𝜌

]
 
 
 
 

.  

Theorem 2.5.1. Let the following conditions be satisfied 

a) 𝜂𝜏−1
1 < 𝜂̅, 𝜂̃2 > 𝜂2, 

b) 𝐿̅𝜏−1
2 ≥ 𝐿̅𝜏

2 and 𝑀𝜏−1 ≥ Φ1(𝜂̅). 

Then 𝐿̅𝑡
2 ≤ 𝐿̃𝑡

2 for all 𝑡 > 𝜏, and 𝐿̃𝑡
2 decreases. 

In the sixth paragraph this chapter examines a model 𝑍̃ 

consisting of the simplest 𝑛 single-product models of economic 

dynamics and provides a description of the model  𝑍̃ = (𝐹𝑖 , 𝑣𝑖 , 𝜔𝑡
𝑖). 

So we denote single-product models and assume that the wage rate in 

all models is the same at all points in time 

𝜔𝑡
1 = ⋯ = 𝜔𝑡

𝑛 = 𝜔,      𝑡 = 1, 2, …. 
In the same section, the asymptotic properties of the model 

𝑍 ̃trajectories are studied. Through 

𝛼𝑖 = max
𝐾,𝐿≥0

𝑣𝑖𝐾 + 𝐹𝑖(𝐾, 𝐿)

𝐾 + 𝜔𝐿
= max

𝜂>0

𝑣𝑖𝜂 + 𝑓𝑖(𝜂)

𝜂 + 𝜔
 .               (2) 

let us denote the growth rates of the models 𝑍̃,𝑖 𝑖 = 1, 𝑛̅̅ ̅̅ ̅. 
From the properties of the trajectories of a model with a strict 

equilibrium state it follows 

Theorem 2.6.1. For any trajectory there is (𝑥𝑡) 

lim
𝐾𝑡
1 +⋯+ 𝐾𝑡

𝑛 + 𝜔 𝐿𝑡
𝛼𝑡

=𝜆 > 0. 

If 𝜆 > 0, then  
𝐾𝑡
𝑛

𝐿𝑡
→ 𝜂̅,

𝐾𝑡
𝑖

𝛼𝑡
→ 0, 𝑖 = 1, 𝑛 − 1.̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Let the function 𝑔̂𝑖 be defined by the equality 𝑔̂𝑖(𝜂) = 𝑣𝑖𝜂 +

𝑓𝑖(𝜂)(𝑖 = 1, 𝑛̅̅ ̅̅ ̅). Then it is fair. 
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Theorem 2.6.2. Let the equalities be satisfied for the 

sequence 𝜂𝑡
𝑛 and 𝜂̅ is the capital-labor ratio at which the maximum in 

(2) is achieved at. Then 

1) 𝜂𝑡
𝑛 decreases, 

2) 𝜂𝑡
𝑛 → 𝜂̅, if and for everyone, 𝜂0

𝑛 > 𝜂̅  , 𝜉𝑡
𝑛 ≤

min (
𝑔̂𝑛(𝜂𝑡

𝑛)

𝑔̂𝑛(𝜂̅)
,
𝑓𝑛(𝜂𝑡

𝑛)

𝜔
) for all 𝑡, if 𝜂0

𝑛 → 𝜂̅, or 𝜉𝑡
𝑛 > min (

𝑔̂𝑛(𝜂𝑡
𝑛)

𝑔̂𝑛(𝜂̅)
,

𝑓𝑛(𝜂𝑡
𝑛)

𝜔
) at least one 𝑡, then the sequence becomes 𝜂𝑡

𝑛, starting from a 

certain point, negative. 

Let us assume that 𝛼𝑛 > 𝛼𝑖, 𝑖 ≠ 𝑛 and denote 𝛼 = 𝛼𝑛, 𝑥 =

(0,… , 0, 𝐾̅, 𝐿̅), where,  𝐾̅ = 𝐾̅𝑛, 𝐿̅ = 𝐿̅𝑛 and 𝐾,̅ 𝐿̅, is selected from the 

conditions 𝐾̅ + 𝜔𝐿̅ = 1, 𝛼 = 𝑣𝑛𝐾̅ + 𝐹𝑛(𝐾̅, 𝐿̅). The capital-labor ratio 

𝜂̅ =
𝐾̅

𝐿̅
 at which the maximum in (2) is achieved at 𝑖 = 𝑛̅ is called 

optimal. Since 𝛼 = 𝛼𝑛 = 𝛾𝑛𝜂̅, then the optimality of the capital-

labor ratio 𝛼 = 𝛼𝑛 = 𝛾𝑛 is equivalent to the equality 

𝛼 = 𝑣𝑛 + 𝑓𝑛(𝜂̅).                                               (3) 
The seventh paragraph is devoted to the study of the properties 

of trajectories of a model 𝑍̃ of the form (𝐾𝑡
1, … , 𝐾𝑡

𝑛, 1), 𝐿𝑡
1 +⋯+

𝐿𝑡
𝑛 = 1. 

Let 𝑛 = 2. Let us define a set 𝑈 as a collection of pairs 

(𝐾1, 𝐾2) such that a trajectory of the form (𝐾𝑡
1, 𝐾𝑡

2, 1), 𝐿𝑡
1 + 𝐿𝑡

2 = 1 

emanates from a point (𝐾1, 𝐾2, 1). Let us note some properties of the 

se𝑡 𝑈 . 

1.  𝑈 stable (in the sense 𝑅+
2  of); if and (𝐾1, 𝐾2) ≥

(𝐾̃1, 𝐾̃2), (𝐾̃1, 𝐾̃2) ∈ 𝑈 , then (𝐾1, 𝐾2) ∈ 𝑈. 

2. 𝑈 the set budged. 

3. The point where and is such that (0, 𝜆𝜂̅) ∈ 𝑈, 𝜆 >

1, 𝛼(𝜔(𝜂̅)) = 1. 
Let 

(𝐾̃1, 𝜂̅, 1) ∈ 𝑎(𝐾1, 𝜂̅ − 𝜀, 1);     0 < 𝜀 ≤ 𝜂̅,                    (4) 

where  1 = 𝐿1 + 𝐿2 = 𝐿̃1 + 𝐿̃2. 
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Let's  𝜀 > 0 fix it and let 

            ℒ𝜀(𝐿
1) = −(1 − 𝑣2)𝜂̅ − 𝑣2 𝜀 + 𝐹2(𝜂̅ − 𝜀, 1 − 𝐿

1).        (5) 
It is easy to notice that the function  ℒ𝜀(𝐿

1) is decreasing and 

concave. Besides, ℒ𝜀(𝐿
1) ≥ 𝜔. 

Consider the equality 

 𝐹2(𝜂̅ − 𝜀, 1 − 𝐿
1) − 𝑣2 𝜀 = (1 − 𝑣2)𝜂̅.               (6) 

It is easy to check that (6) has a solution if and only if 

𝐹2(𝜂̅ − 𝜀, 1) − 𝑣2 𝜀 > (1 − 𝑣2)𝜂̅. 
Since and, then 𝐿̃1 = 1 − 𝐿̃2𝜔𝐿̃2 = ℒ𝜀(𝐿

1), 
𝐹1(𝐾

1, 𝐿1) > 𝜔 − ℒ𝜀(𝐿
1) = ℒ𝜀(𝐿

1).                    (7) 
Theorem 2.7.1. (7) has a solution for some if and only if   

𝐹1
′(𝐾1, 0) ≥ 𝐹1

′(𝜂̅, 1).                                       (8) 
Note 1. For the Cobb-Douglas production function, condition 

(8) is always satisfied, since 𝐹1
′(𝐾1, 0) = +∞. 

Note 2. For the CES production function, relation (8) is 

equivalent to the inequality 

𝐵1
−
1

𝜌1 ≥ 𝐵2(𝐴2𝜂̅
−𝜌2 + 𝐵2)

−
1+𝜌2
𝜌2 . 

There is great interest in Neumann-type models of economic 

dynamics causes asymptotic behavior of trajectories of various 

classes. In the eighth section, the asymptotic behavior of trajectories 

with an average growth rate 𝛼 is studied. These trajectories are of 

both independent and applied interest: in some cases, they make it 

possible to describe the asymptotic behavior of optimal trajectories. 

Let us give its description. 

Let 𝑍- a convex cone lying in 𝑅+
𝑛 ⨯ 𝑅+

𝑛 and such that 𝑃𝑟𝑍 ∩
𝑖𝑛𝑡𝑅+

𝑛 ≠ ∅ . Let us call the Neumann growth rate of the cone 𝑍 the 

number 

𝛼 = sup
(𝑥,𝑦)∈𝑍

min
𝑖∈𝐼

𝑦𝑖

𝑥𝑖
, 

where 𝐼 = {1,2, … , 𝑛}. 
We call a sequence (𝑥𝑘, 𝑦𝑘) of elements of a cone 𝑍 

Neumannian  

(𝑥𝑘, 𝑦𝑘)  = min
𝑖∈𝐼

𝑦𝑖

𝑥𝑖
. 
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Let us introduce a set of indices. 𝐼𝑍 ⊂ 𝐼 into consideration. 

Number 𝑖 ∈ 𝐼𝑍 if and only if (𝑥𝑘, 𝑦𝑘) there is a Neumann sequence 

such that 𝑦𝑘
𝑖 > 0  (𝑘 = 1,2, … ). 

Let 𝑍 be the Neumann-Gale model. A cone generates a finite 

sequence 𝑍1, … , 𝑍2, 𝑍𝑛 of cones as follows. Let's 𝑍1 = 𝑍 put, let's 

denote 𝑅+
𝑛 = 𝐾1. Thus, 𝑍1 ⊂ 𝐾1 ⨯ 𝐾1. If   𝐼1 = 𝐼𝑍1 = 𝐼, then the 

process is over; if 𝐼1 ≠ 𝐼, then consider the face 𝐾2 of the cone 

𝑅+  
𝑛 spanned by unit vectors with numbers from 𝐼\𝐼1 , and define 𝑍2 it 

as the projection of the cone onto the face 𝐾2 ⨯ 𝐾2 of the cone 𝑅+
𝑛 ⨯

𝑅+
𝑛. 

If 𝐼2 = 𝐼𝑍2 = 𝐼\𝐼
1 , then the process is over; otherwise, 

consider the face𝐾3 of the cone spanned by unit vectors with 

numbers from, and denote 𝑍3   by the projection 𝑍2  onto the face 

𝐾3 ⨯ 𝐾3 of the cone  𝑅+
𝑛 ⨯ 𝑅+

𝑛 . If  𝐼3 ≡ 𝐼𝑍3 = 𝐼\(𝐼
1 ∪ 𝐼2), then we 

build a cone 𝑍4, etc. This process will end at some step 𝑁. 

As a result, we have constructed cones 𝑍𝑗 and sets of indices 

𝐼𝑗(𝑗 = 1,2, … , 𝑁), 𝐼𝑗 ∩ 𝐼𝑗1 = ∅, 𝐼𝑗 ≡ 𝐼𝑍𝑗   (𝑗 ≠ 𝑗1) and Let us denote 

by the Neumann growth rate 𝛼𝑗 of the cone  𝑍𝑗. We will call the 

number the quasi-growth rate 𝛼𝑗 of the model. It is known that 

𝛼𝑗−1 > 𝛼𝑗 . 

The highway is the conical shell of the set 𝑀𝛼 of all points𝛼 of 

all trajectories 𝑥𝑦 with an average tempo that are limiting in angular 

distance. The angular distance between points is called the quantity 

‖
𝑥

‖𝑥‖
,
𝑦

‖𝑦‖
‖. 

Let us denote by the conical hull the sets 𝐴𝑧 of all points of all 

optimal trajectories that are limiting in angular distance.  
The Neumann-Gale model 𝑍 ⊂ 𝑅+

𝑛 ⨯ 𝑅+
𝑛, which has quasi-

tempos, and its dual model 𝑍′are considered. 

Lemma 2.8.1. For any quasi-tempo 𝛼𝑗, any number 𝜆 > 𝛼𝑗 , 

any index 𝑖 ∈ ⋃ 𝐼𝜇
𝑁
𝑗  and any trajectory 𝑋 = (𝑥𝑡) there is a limit 

lim
 
𝜆−𝑡𝑥𝑡

𝑖 = 0. 
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Theorem 2.8.2.Let be the Neumann-Gale model 𝑍  and there 

be a trajectory 𝑋  and an infinite set of time moments𝜏 such that the 

sets of indices 𝐼 = {1,2, … , 𝑛} can be divided into three subsets 

𝐽1, 𝐽2, 𝐽3 as follows 

         𝑥𝑡
𝑖 = 0 for anyone 𝑖 ∈ 𝐽1, 𝑡 ∈ 𝜏,                         (9) 

         0 < 𝑐1 ≤ 𝑥𝑡
𝑖 ≤ 𝑐2 < ∞ for anyone 𝑖 ∈ 𝐽2, 𝑡 ∈ 𝜏,       (10) 

          lim
 
𝑥𝑡
𝑖 = +∞ for anyone 𝑖 ∈ 𝐽3.                         (11) 

Then for any point satisfying the conditions  𝑥 ∈ 𝑅+
𝑛 

𝑥 
𝑖 = 0 for anyone 𝑖 ∈ 𝐽1 ∪ 𝐽2, 
𝑥 
𝑖 > 0 for anyone 𝑖 ∈ 𝐽3. 

there 𝑋1 is a trajectory that satisfies conditions (9)-(11) and has 

among its points limiting the angular distance the point  𝑥. 

The ninth paragraph of the second chapter is devoted to the 

study of the main properties of the trajectories of models of 

economic dynamics. Let the simulated economy consist 

of 𝑛  industries, each producing different products. Phase space of the 

model – cone (𝑅+
𝑛)𝑛. Vector 𝑥 = (𝑥′, . . . , 𝑥𝑛) ∈ (𝑅+

𝑛)𝑛 is the state of 

the model, vector 𝑥𝑖 = (𝑥𝑖𝑗) ∈ 𝑅+
𝑛- vector of resources at disposal 𝑖 - 

oh industry. Production activities  𝑖 - th industry is described using a 

superlinear continuous production function 𝛷𝑖: 𝑅+
𝑛 → 𝑅+ and 

diagonal matrix 𝐴𝑖 , on the diagonal of which there are numbers 𝑣𝑖𝑗 ∈

[0,1](𝑗 = 1, 𝑛). It is assumed that 𝛷𝑖(𝑥) > 0 then and only when 

𝑥 ∈ 𝐾, where 𝐾 = {𝑦 ∈ 𝑅𝑛: 𝑦𝑖 > 0(𝑖 = 1, 𝑛)}. The production 

display is defined as follows: 

𝑎(𝑥) = {𝑦 = (𝑦𝑖) ∈ (𝑅+
𝑛)𝑛|0 ≤ 𝑦𝑖 ≤ 𝐴𝑖𝑥𝑖 + 𝑑𝑖 , 

𝑑𝑖 = (𝑑𝑖𝑗) ≥ 0,∑𝑑𝑖𝑗
𝑛

𝑖=1

≤ 𝛷𝑗(𝑥𝑗), 𝑗 = 1, 𝑛}, 

where 𝑥 = (𝑥 ′, . . . , 𝑥𝑛) ∈ (𝑅+
𝑛)𝑛. 

Consider the superlinear normal mapping 𝑏:𝑅+
𝑛 → 𝜋(𝑅+

𝑛), 

whose Neumann growth rate is equal to  𝛼, and there is a state of 
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equilibrium (𝛼, (𝑥, 𝛼𝑥), 𝑝) such that 𝑝 ∈ 𝐾. In the future we will 

need 

Lemma 2.9.1. Let (𝑥𝑡)- display trajectory  𝑏 with an average 

growth rate 𝛼;  𝛺 (respectively 𝛺1) – set of limit points of the 

sequence {𝛼−𝑡𝑥𝑡} (respectively {𝛼−𝑡(𝑥𝑡, 𝑥𝑡+1)}). Then for anyone 

𝑦0 ∈ 𝛺 (respectively (𝑦0, 𝑦1) ∈ 𝛺1) there is a sequence {𝑦𝑡}(𝑡 =

0, ±1, . . . ) such that 𝑦𝑡 ∈ 𝛼
𝑡𝛺,   𝑦𝑡+1 ∈ 𝑏(𝑦𝑡). 

Lemma 2.9.4. For anyone𝑥 ∈ 𝑅𝑛, integer  𝑚 ≥ 0  performed 

‖𝐵𝑚𝑥 − (𝑟𝑖(𝑝))
−1

𝛼𝑚𝑥𝑖𝑟(𝑝)‖ ≤ 

≤ ‖𝐴𝑖‖
𝑚
‖𝑥 − (𝑟𝑖(𝑝))

−1
𝑥𝑖𝑟(𝑝)‖. 

Theorem 2.9.2. Display trunk  𝑎′is the beam {𝜆𝑝|𝜆 ≥ 0}. 

The third Chapter consists of five paragraphs and is devoted to 

the study of the consumption function in single-product models of 

economic dynamics. The first paragraph of this chapter describes the 

model. The model is given by the relations 

0 ≤ 𝐾 ≤ 𝑣 𝐾̅ + 𝐼,    𝐼 ≥ 0,    𝐼 + 𝜔𝐿 ≤ 𝐹(𝐾̅, 𝐿̅) 
and it is assumed that 𝐹𝑡 = 𝐹, 𝑣𝑡 = 𝑣 and a constant 𝑠 rate of 

accumulation is given, independent of the size of the labor force . 
Let, 𝐿 = 𝛽 ∙ 𝐿̅, where 𝛽 is the growth rate of the labor force. Then  

𝑊(𝐿) = (1 − 𝑠)𝐹 (𝐾̅,
1

𝛽
 𝐿), 

and specific consumption 𝜔 is expressed through the accumulation 

rate 𝑠 by the equality  

𝜔 =
𝑊(𝐿)

𝐿
= (1 − 𝑠)𝐹 (

𝐾̅

𝐿̅
∙
𝐿̃

𝐿
,
1

𝛽
) = (1 − 𝑠)𝐹(𝜂̅, 1)

1

𝛽
= 

= (1 − 𝑠)
1

𝛽
 𝑓(𝜂̅).                                   (12) 

The second paragraph of the third Chapter is devoted to the 

study of the dependence of the consumption function then 𝑊(𝐿) on 

the type of production function 𝐹𝑡 = 𝐹. Since for everyone, then  
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𝜔 =
𝑓(𝜂) − 𝜂 𝑓′(𝜂)

𝑣 + 𝑓′(𝜂)
 ,                                    (13) 

where is the root of the equation 𝜂 = 𝜂(𝐿) 

𝜂 =
𝑀

𝐿
−
𝑓(𝜂) − 𝜂 𝑓′(𝜂)

𝑣 + 𝑓′(𝜂)
 .                               (14) 

Here 𝑀 the quantity denoted by is national wealth 𝜈𝐾̅ +
𝐹(𝐾̅, 𝐿̅) at the moment 𝑡. We assume that the function 𝑓 is three 

times continuously differentiable, and 𝑓′(𝜂) > 0𝑓′′(𝜂) < 0𝜂 > 0 for 

𝜂 > 0 

Theorem 3.2.1. Let 𝐹(𝐾, 𝐿) = 𝐴𝐾𝑟𝐿1−𝑟 , 0 < 𝑟 < 1 be the 

Cobb-Douglas function and 𝜔 the specific consumption is calculated 

using formulas (12) and (13). Then 𝑊 is an increasing concave 

function, and lim
𝐿→+∞

𝑊(𝐿) → +∞. 

Let now be a function (CES). Further. Let us introduce the 

designation. Then for we get  

𝐹(𝐾, 𝐿) = (𝐴𝐾−𝜌 + 𝐵𝐿−𝜌)
−
1

𝜌𝜌 > 1, 𝑌 = 𝐴 + 𝐵𝜂𝜌. 
It is assumed that,  

𝑊 ′(𝐿) = 𝜇 (𝑣𝐵𝜂𝜌 − 𝑣𝐴𝜌 − 𝐴𝜌𝑌
−
1

𝜌) 

where 𝜌 > 0. 

That's why 

𝑆𝑖𝑔𝑛 𝑊′(𝐿) = 𝑆𝑖𝑔𝑛 (𝑣𝐵𝜂𝜌 − 𝑣𝐴𝜌 − 𝐴𝜌𝑌
−
1

𝜌).          

Lemma 3.2.1. The equation  𝑔(𝜂) = 𝑣𝐵𝜂2 − 𝑣𝐴𝜌 −

𝐴𝜌(𝐴 + 𝐵𝜂𝜌)
−
1

𝜌 = 0 has a single root 𝜂̅1 on the positive semi-axis, 

and at  𝜂 > 𝜂̅1  𝑔(𝜂) > 0 and at 𝜂 < 𝜂̅1  𝑔(𝜂) < 0. . 

Theorem 3.2.2. Let 𝐹(𝐾, 𝐿) = (𝐴𝐾−𝜌 + 𝐵𝐿−𝜌)
−
1

𝜌, where 𝜌 >
1 and specific consumption 𝜔 is calculated using formulas (12), (13). 

Then: 

1) the function 𝑊(𝐿) has a single inflection point 𝐿̅2 at 

which it changes concavity to convexity, while 𝐿̅2 > 𝐿̅1; 
2) lim

𝐿→∞
𝑊(𝐿) = 0. 
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The third paragraph of the third Chapter is devoted to the study 

of the dependence of the volume of consumption on the means of 

production. Let 𝐿̅  and 𝐿 and 𝜔 be given and calculated using 

formulas (12), (13). It is shown that in this case, consumption 𝜔 at 

the moment 𝑡 + 1 will depend on the volume of funds 𝑀 = 𝑣𝐾̅ +
𝐹(𝐾̅, 𝐿̅). Since 𝐿̅ ,and 𝐿 are fixed, consumption depends on 𝐾̅ , From 

equation (14) 𝑀 can be expressed as a function:  

𝑀(𝜂) = 𝐿
𝑢(𝜂)

𝛽(𝜂)
 . 

Note that 𝑀 the increasing function, and  

lim
𝜂→+0

𝑀(𝜂) = 0 ,       lim
𝜂→+∞

𝑀(𝜂) = ∞ . 

We have 

𝑊(𝑀) = 𝐿 ∙ 𝜔(𝑀) = 𝐿 
𝛿(𝜂(𝑀))

𝛽(𝜂(𝑀))
 . 

Let's assume that 𝐹(𝐾, 𝐿) = (𝐴𝐾−𝜌 + 𝐵𝑖𝐿
−𝜌 )

−
1

𝜌  the CES 

function. Let us introduce the following notation 

𝑑(𝜂) = 𝑑1(𝜂) − 𝑑2(𝜂), 

𝑑1(𝜂) = (−𝑣𝐵𝜂𝜌 + 𝑣𝐴𝜌 + 𝐴𝜌𝑌
−
1

𝜌) (1 + 𝑣𝐴𝑌
1

𝜌
−1
), 

𝑑2(𝜌) = 𝑣(1 + 𝜌)𝐵2𝜂2𝜌 (1 + 𝑣𝑌
1

𝜌) 𝑌−1. 

Obviously. 𝑊′′ = 0, if and only if 𝑑1(𝜂) = 𝑑2(𝜂). You can 

easily calculate and. 

Similar to theorem 3.2.2, it can be shown that there is a unique 

point 𝑀̅ = 𝑀(𝜂̅2) where 𝜂̅2 is the root of the equation 𝑑(𝜂) = 0 such 

that 𝑊′′(𝑀) = 0. 

From the results obtained it follows that 

lim
𝑀→+∞

𝑊(𝑀) = 𝐿 lim
𝜂→+∞

𝛿(𝜂)

𝑣
=
𝐿

𝑣
lim
𝜂→+∞

𝛿(𝜂) . 

It is easy to check that in the case when that 𝐹(𝐾, 𝐿) =

𝐴𝐾𝑟𝐿1−𝑟 is the Cobb-Douglas function, lim
𝜂→+∞

𝛿(𝜂) = +∞. If 

𝐹(𝐾, 𝐿) is a function with constant elasticity of comment (CES), then 
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lim
𝜂→+∞

𝛿(𝜂) = 𝐵
− 
1

𝜌. Indeed, let 𝐹 be the Cobb-Douglas function. 

Since in this case 𝐹𝑓(𝜂) = 𝐴𝜂𝜌, it follows from (3.2.3) that 

lim
𝜂→+∞

𝛿(𝜂) = lim
𝜂→+∞

(𝐴𝜂𝜌 − 𝜂𝐴𝜌𝜂𝜌−1) = lim
𝜂→+∞

𝐴𝜂𝜌(1 − 𝜌) = +∞. 

For the CES function we have: 

lim
𝜂→+∞

𝛿(𝜂) = 𝐵 lim
𝜂→+∞

(𝜂𝜌)
1+ 

1

𝜌

(𝐴 + 𝐵𝜂𝜌)
1+ 

1

𝜌

= 

= 𝐵 lim
𝜂→+∞

1

(
𝐴

𝜂𝜌
+ 𝐵)

1+ 
1

𝜌

= 𝐵
− 
1

𝜌 . 

Thus, for the Cobb-Douglas function, consumption and 𝑊(𝑀) 

is an increasing concave function, and in the case lim
𝑀→+∞

𝑊(𝑀) =

+∞ where 𝐹 is a function with constant elasticity of substitution, 

consumption 𝑊(𝑀) is an increasing function that has a single 

inflection point 𝑀̅, at which it changes convexity to concavity, and 

lim
𝑀→+∞

𝑊(𝑀) < +∞. 

In the fourth paragraph of the third Chapter, several indicators 

are maximized, including total consumption, total output and total 

national wealth. 

∑𝑊𝑖(ℓ𝑖)

n

i=1

→ 𝑚𝑎𝑥 ,                                          (15) 

∑𝐹𝑖(𝐾
𝑖 , ℓ𝑖)

𝑛

𝑖=1

→ 𝑚𝑎𝑥 ,                                 (16) 

∑ 𝑣𝑖𝐾
𝑖

𝑛

   𝑖=1

+ 𝐹𝑖(𝐾
𝑖, ℓ𝑖) → 𝑚𝑎𝑥 ,                        (17) 

given that, 0 ≤ ℓ𝑖 ≤ 𝐿∑ ℓ𝑖
𝑛
𝑖=1 = 𝐿. Here 𝑊𝑖(ℓ𝑖) is the consumption 

fund, 𝐹𝑖 is output, 𝐹𝑖(𝐾
𝑖, ℓ𝑖) + 𝑣𝑖𝐾

𝑖 is national wealth in the th 
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model under the assumption that specific consumption is selected 

according to formulas (12), (13). 

Theorem 3.4.1. Let 𝐹𝑖𝑖 = 1, 𝑛̅̅ ̅̅ ̅  be the Cobb-Douglas function. 

Then in problems (15)-(17) the vector ℓ̅𝑖 belongs to the interior of 

the cone 𝑅+
𝑛(ℓ ≥ 0). 

Theorem 3.4.2. Consider the models (𝐹1, 𝑣1) and (𝐹2, 𝑣2), 
where 𝐹𝑖 are the CES functions 

𝐹𝑖(𝐾, 𝐿) = (𝐴𝑖𝐾
−𝜌𝑖 + 𝐵𝑖𝐿

−𝜌𝑖)
−
1

𝜌𝑖 ,        (𝑖 = 1, 2), 
and 𝜌𝑖 > 0. Then total consumption 𝑊𝑖(ℓ𝑖) reaches its maximum on 

the segment [0, 𝐿] at the point ℓ𝑗 = 𝐿 if and only if 𝐿 ≤ 𝐿̅𝑗, 𝑊𝑗
′(𝐿) ≥

1

𝑣𝑖
𝐵
𝑖

−
1

𝜌𝑖 > 𝐿 and total output reaches its maximum at the point 𝐿 if 

and only if 𝐹𝑗
′(𝐿) ≥ 𝐵

𝑖

−
1

𝜌𝑖 , 𝑖 ≠ 𝑗. Here 𝐿̅𝑗 is the only point of 

maximum of the function 𝑊𝑗 on the positive semi-axis. 

Theorem 3.4.3. For any production function 𝐹 in problem (17) 

ℓ̅𝑖 < 1. 

In the fifth paragraph of the third Chapter, the question of the 

dependence of the volume of funds on the size of the labor force at a 

constant rate of accumulation is studied within the framework of the 

simplest single-product model. 

Let us assume that in (1) equality is realized and 𝑠 constant rate 

of accumulation is given, independent of the size of the labor force, 

i.e. 𝐼𝑡+1 = 𝑠𝐹(𝐾𝑡, 𝐿𝑡). Then  

𝐾𝑡+1 = 𝑣𝐾𝑡 + 𝑠𝐹(𝐾𝑡, 𝐿𝑡).                                    (18) 
Let's introduce the function 

𝑔̅(𝐾𝑡) = 𝑣𝐾𝑡 + 𝑠𝐹(𝐾𝑡, 𝐿𝑡). 
Then 

𝐾𝑡+1 = 𝑔̅(𝐾𝑡). 
Let us first consider the case when for all . Let𝐿𝑡 = 𝐿𝑡𝑔̅(𝐾) =

𝑣𝐾 + 𝑠𝐹(𝐾, 𝐿) where 

𝐾 − 𝑔̅(𝐾) = 𝐾 (1 − 𝑣 − 𝑠𝐹 (1,
𝐿

𝐾
))  ,    𝐾 ≠ 0 .        (19) 

Due to concavity 𝑔̅, the equation 
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                                                     𝐾 = 𝑔̅(𝐾)                                             (20) 
has at most two roots, one of them being the point [0, +∞). Let us 

assume that there 𝐾̅0 = 0 is a solution to equation (20) that is 

different from zero. Then from (19) it follows that the relations 

𝐾 > 𝐾̅(𝐾 < 𝐾̅),      𝑔̅(𝐾) < 𝐾(𝑔̅(𝐾) > 𝐾)                   (21) 
are equivalent. 

Proposition 3.5.1. Let 𝑔̃ some function be defined on (0, +∞), 

increase and the equation 𝐾 = 𝑔̃(𝐾) have a unique solution𝐾̅, and 

relations (21) are equivalent. Let, further, the sequence 𝐾𝑡 satisfy the 

equalities 𝐾𝑡+1 = 𝑔̃(𝐾𝑡)(𝑡 = 0, 1, … ) and 𝐾0 > 0. Then 𝐾𝑡 → 𝐾̅, 

and if  𝐾0 > 0, then 𝐾𝑡  increases, if  𝐾0 > 𝐾̅,  then 𝐾𝑡 decreases. 

Theorem 3.5.1. If 𝐾̅0 = 0 the only root of the equation 𝐾 =

𝑔̃(𝐾) on [0, +∞) and for the sequence 𝐾𝑡 satisfies the equality, 

𝐾𝑡+1 = 𝑔̃(𝐾𝑡), then  𝐾𝑡 decreases and 𝐾𝑡 → 0. 

Theorem 3.5.2. Let the sequence 𝐾𝑡 be constructed using 

formula (18) for a certain initial volume of funds 𝐾0, and the 

equation 𝐾 = 𝑔̃𝐿𝑖(𝐾) has a positive solution starting from 𝑖 = 𝜏. 

Then 𝐾𝑡 → 𝐾̅𝐿′, and if  𝐾𝑖 > 𝐾̅𝐿𝑖 for all 𝑖 ≥ 𝜏, then 𝐾𝑡 decreases, but 

if exists  𝑚 ≥ 𝜏: 𝐾𝑚 < 𝐾̅𝐿𝑚, then the sequence 𝐾𝑡 decreases until the 

moment 𝑚, after which it increases 

Corollary 1. If the equation 𝐾 = 𝑔̃𝐿′(𝐾) does not have a 

positive solution, then the sequence 𝐾𝑡 constructed using (18) 

decreases and 𝐾𝑡 → 0 

Corollary 2. Let 𝜏 = 𝑚 = 0 in theorem 3.5.2. Then 𝐾𝑡 → 𝐾̅, 

and 1) if 𝐾𝑡 < 𝐾̅𝐿0 (i.e. 𝑚 = 0), then 𝐾𝑡 increases; 2) if 𝐾0 > 𝐾̅𝐿0 and 

𝑚 ≠ 0 a), then 𝐾𝑡 decreases until 𝑚, after which it increases; b) 𝑚 

does not exist, then 𝐾𝑡 decreases. 

Theorem 3.5.3. Let 𝐾𝑡, under the assumption made above, the 

sequence be constructed using formula (18) for a certain volume of 

funds 𝐾0, and the equation  𝐾 = 𝑔̅𝐿𝑖(𝐾) has a positive solution for all 

𝑖 = 0, 1 
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Then 𝐾𝑡 → 𝐾̅𝐿′′, and if 𝐾0 > 𝐾̅𝐿0 , then 𝐾𝑡 decreases, if 𝐾0 <

𝐾𝐿0 and a) 𝐾𝑖 < 𝐾̅𝐿𝑖 for any 𝑖, then 𝐾𝑡 increases; b) there 𝜏:  𝐾𝐿𝜏 >

𝐾𝐿𝜏 is a moment, then 𝐾𝑡 it increases to, after which it decreases 

Let us denote by the 𝐾̅1 root of the equation 𝐾1 = 𝑣𝐾1 +

𝐹(𝐾1, 𝐿′), where 𝐾1 = 𝐾̅1 do we have  

1 − 𝑣

𝑠
=
𝐹1(𝐾̅

1, 𝐿′)

𝐾̅1
= 𝐹1 (1,

𝐿′

𝐾̅1
) = 𝑄1(𝜉1) , 

where 𝜉1 =
𝐿′

𝐾̅1
 and therefore  𝑄1

−1 (
1−𝑣

𝑠
) = 𝜉1 . Therefore  𝜉1𝐾̅

1 = 𝜃̃1 

where 

𝜃̃1 =
1

𝑄1
−1 (

1−𝑣

𝑠
)
 . 

Similarly,  𝐾̅2 = 𝜃̃2(𝐿 − 𝐿
′), where 𝐾̅2 is the root of the 

equation 

𝐾2 = 𝑣𝐾2 + 𝑠𝐹2(𝐾
2, 𝐿 − 𝐿′) ,       𝜃̃2 =

1

𝑄2
−1 (

1−𝑣

𝑠
)
 , 

𝑄2(𝜉2) = 𝐹2 (1,
𝐿 − 𝐿′

𝐾̅2
) ,       𝜉2 =

𝐿 − 𝐿′

𝐾̅2
 . 

 

Theorem 3.5.4. Let 𝐾̅1 , 𝐾̅ 2 it be positive. Then the maximum 

in the problem is achieved at one of the ends.  

Chapter 1V consists of six paragraphs. Since in the future 

reproduction models will mainly be studied, the first paragraph 

provides a description of the reproduction model with Leontief-type 

production functions. These models were introduced by A.M. 

Rubinov2. 

The simulated economy consists of  𝑛 industries, each 

producing one product, with different industries producing different 

                                                 
2 Rubinov A.M. Mathematical models of expanded reproduction. L., Nauka, 1983, 

185 p. 
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products. Phase space of the model – cone (𝑅+
𝑛)𝑛. The vector 𝑋 =

(𝑥1, … , 𝑥𝑛) ∈ (𝑅+
𝑛)𝑛 is called the state of the model, 𝑥𝑘∙ =

(𝑥𝑘1, … , 𝑥𝑘𝑛) ∈ 𝑅+
𝑛– the state of the 𝑘 − th industry. The production 

activity of the  𝑘- th industry during the period [𝑡, 𝑡 + 1] is described 

using the production function 𝐹𝑡
𝑘 ∶  𝑅+

𝑛 → 𝑅+ and the diagonal safety 

matrix 𝐵𝑡
𝑘, on the diagonal of which there are numbers 𝑣𝑡

𝑘𝑖 ∈
[0, 1](𝑖 = 1, 𝑛̅̅ ̅̅ ̅).  

It is assumed that 

𝐹𝑡
𝑘(𝑥) = min

𝑖=1,𝑛̅̅̅̅̅

𝑥𝑖

𝑐𝑡
𝑖𝑘
(𝑥 ≥ 0,   𝑐𝑡

𝑖𝑗
≥ 0,   𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅,   𝑡 = 0, 1, … ). 

Thus, if the 𝑘-th industry at the moment 𝑡 has a vector of 

resources𝑥, then at the moment 𝑡 + 1 after the production process it 

will have a vector of resources 𝐵𝑡
𝑘 ∙ 𝑥 and a newly produced product 

𝐹𝑡
𝑘(𝑥)  in quantity. 

Let us introduce a superlinear operator (𝐵 ∙ 𝐹)𝑡 ∶ (𝑅+
𝑛)𝑛 → 𝑅+

𝑛 

and (𝐵 ∙ 𝐹)𝑡
𝑘 ∶ 𝑅+

𝑛 → 𝑅+
𝑛 

 

(𝐵𝐹)𝑡
𝑘(𝑥) = 𝐵𝑡

𝑘 ∙ 𝑥 + (0,… , 0, 𝐹𝑡
𝑘(𝑥), 0, … , 0)(𝑥 ∈ 𝑅+

𝑛),      (22) 

(𝐵𝐹)𝑡(𝑋) = ∑(𝐵𝐹)𝑡
𝑘(𝑥𝑘∙)

𝑛

𝑘=1

=∑𝐵𝑡
𝑘 ∙ 𝑥𝑘∙

𝑛

𝑘=1

+ (𝐹𝑡
1(𝑥1∙),… , 𝐹𝑡

𝑛(𝑥𝑛∙)) 

(𝑋 = (𝑥1∙, … , 𝑥𝑛∙) ∈ (𝑅+
𝑛)𝑛). 

Model with production display 

𝑎𝑡(𝑋) = (0,   (𝐵𝐹)𝑡(𝑋))                (𝑥 ∈ (𝑅+
𝑛)𝑛)        (23) 

denote by 𝑍. 
Note that the production display of the industry at the moment 

has the form𝑎𝑡
𝑘𝑘𝑡 

𝑎𝑡
𝑘(𝑥) = (0,   (𝐵𝐹)𝑡

𝑘(𝑋)) (𝑥 ∈ 𝑅+
𝑛).  

The second paragraph of Chapter 1V is devoted to equilibrium 

mechanisms for constructing trajectories of economic dynamics 

models. Let at some moment 𝑡 be given the security matrix 

𝐵𝑘and 𝐹𝑘(𝑥) = min
𝑖=1,𝑛̅̅̅̅̅

𝑥𝑖

𝑐𝑖𝑘
(𝑘 = 1, 𝑛̅̅ ̅̅ ̅) . Let us denote the vector of 

prices ℓ = (ℓ1, … , ℓ𝑛) at the moment 𝑡. The total wealth of industries 
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at these prices and the vector of resources 𝑥∙ = (𝑥1∙, … , 𝑥𝑛∙) at the 

moment 𝑡 will be denoted by 

 

𝑈𝑘(ℓ, 𝑥) = max{[ℓ, 𝑦]|𝑦 ∈ 𝑎𝑘(𝑥)} = 
 

= [ℓ, 𝐵𝑘𝑥] + ℓ𝑘𝐹𝑘(𝑥),       (𝑘 = 1, 𝑛̅̅ ̅̅ ̅),                   (24) 
 

Usually called the industry utility function. Let 𝑈𝑘(𝑘 = 1, 𝑛̅̅ ̅̅ ̅), 
Λ = (𝜆1, … , 𝜆𝑛),where𝜆𝑘 are the given budgets of the 𝑘 −th 

industry, be the vector 𝑦 of allocated resources. Consider the 

equilibrium model 

𝑀 = {𝑦, 𝑈(ℓ), Λ} 
with fixed budgets. 

Let 𝑥𝑡 = (𝑥𝑡
1∙, … , 𝑥𝑡

𝑛∙) the state of the economy be known at the 

moment 𝑡, Based on these data, the vector 𝑦𝑡+1 = (𝑦𝑡+1
1 , … , 𝑦𝑡+1

𝑛 ) to 

be distributed is determined at the moment 𝑡 + 1.  

𝑦𝑡+1
𝑖 =∑𝑣𝑡

𝑘𝑖𝑥𝑡
𝑘𝑖 + 𝐹𝑡

𝑖(𝑥𝑡
𝑖∙)(𝑖 = 1, 𝑛̅̅ ̅̅ ̅). 

Attitude 

𝜇𝑘(ℓ, 𝑥) =
𝑈𝑘(ℓ, 𝑥)

[𝑃, 𝑥]
𝑘 = 1, 𝑛̅̅ ̅̅ ̅,   𝑥 ∈ 𝑅+

𝑛                (25) 

we will call the growth rate of the total wealth of the k-th industry in 

the state 𝑥. 
The same paragraph provides a description of the consumer's 

task. Let the production mapping 𝑎 be specified at the moment 𝑡: 

𝑎(𝑥) = {𝑥̃ = (𝑥̃1∙, … , 𝑥̃𝑛∙) ∈ (𝑅+
𝑛)𝑛 | 0 ≤∑𝑥̃𝑖∙

𝑛

𝑖=1

≤∑𝐵𝑘𝑥̃𝑘∙
𝑛

𝑖=1

+ 

+(𝐹1(𝑥1∙),… , 𝐹𝑛(𝑥𝑛∙)),    𝑥𝑘∙ = (𝑥𝑘1, … , 𝑥𝑘𝑛),   𝑘 = 1, 𝑛̅̅ ̅̅ ̅} ,   (26) 
   Let the vector be a solution to the problem of the 𝑘 − th consumer: 

                  𝑈𝑘(ℓ, 𝑥) → 𝑚𝑎𝑥, 𝑥 ∈ 𝑉̃ = {𝑥 ≥ 0, [𝑃, 𝑥] ≤ 1}, 𝑘 ∈  𝐼. (27) 
Then the equilibrium vector 𝑥𝑘∙ has the form: 

𝑥𝑘∙ = 𝜆𝑘 ∙ 𝑥̅𝑘∙(𝑘 ∈ 𝐼). 
The task is the following: does there exist a model 𝑀 with data 

𝑣𝑘𝑖  and 𝑐𝑖𝑘, in which the set (𝑃, 𝑥1∙, … , 𝑥𝑛∙, 𝑦) is an equilibrium, then 
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find it, that is, indicate such and , that this set is the equilibrium state 

in the model {𝑦, 𝑈(ℓ), Λ}. This problem with 2𝑛 unknowns is ℓ𝑖 
and 𝜆𝑖. 

Let us introduce the notation 𝑥 ∈ 𝑅+
𝑛 

𝐼1(𝑥) = {𝑖 ∈ 𝐼|𝑥
𝑖 = 0}, 

𝐼2(𝑥) = {𝑖 ∈ 𝐼|𝑥𝑖 > 0},                                (28) 

𝑅𝑘(𝑥) = {𝑖 ∈ 𝐼 |
𝑥𝑖

𝑐𝑖𝑘
= min

𝑗∈𝐼

𝑥𝑗

𝑐𝑗𝑘
},      (𝑘 ∈ 𝐼), 

𝑄𝑘(𝑥) = 𝐼|𝑅𝑘(𝑥),      (𝑘 ∈ 𝐼). 
Lemma 4.2.1. Let 𝑥 be the solution to the problem of the 

𝑘 −th consumer. Then, if  𝐼1(𝑥̅) ≠ 0, then 𝐼1(𝑥̅) ⊂ 𝑅𝑘(𝑥̅). 
The utility function of the industry at a point has the form 

𝑈𝑘(ℓ, 𝑥) =∑ℓ𝑗 ∙ 𝑣𝑘𝑗 ∙ 𝑥𝑗

𝑗∈𝐼

+ ℓ𝑘min
𝑗∈𝐼

𝑥𝑗

𝑐𝑗𝑘
 ,    (𝑘 ∈ 𝐼),              

where ℓ = (ℓ1, … , ℓ𝑛) is a given price vector. Let's introduce the 

vector 

ℓ𝑣
𝑘 = (ℓ1 ∙ 𝑣𝑘1, … , ℓ𝑛 ∙ 𝑣𝑘𝑛),   𝑘 ∈ 𝐼. 

In this case, the expression 𝑈𝑘(ℓ, 𝑥) will take the form 

𝑈𝑘(𝑥̅) = 𝑈𝑘(ℓ, 𝑥̅) = [ℓ𝑣
𝑘, 𝑥̅] + ℓ𝑘min

𝑗∈𝐼

𝑥̅𝑗

𝑐𝑗𝑘
 ,    (𝑘 ∈ 𝐼). 

To study the problem of the 𝑘 − th consumer, we apply 

necessary and sufficient extremum conditions, according to which a 

maximum is reached at a point 𝑥̅ if and only if 

(𝑈𝑘)′(𝑥̅, 𝑔) ≤ 0,           ∀ 𝑔 ∈ 𝐺𝑥̅(𝑉) (𝑘 ∈ 𝐼), 

where  𝐺𝑥̅(𝑉) the cone is defined by the formula  

𝐺𝑥̅(𝑉)   = {𝑔 ∈ 𝑅
𝑛|[𝑃, 𝑔] = 0,   𝑔𝑖 ≥ 0,   ∀ 𝑖 ∈ 𝐼1(𝑥̅)}.      

It is well known that 

(𝑈𝑘)′(𝑥̅, 𝑔) = 𝑞𝑘(𝑔), 

where 

𝑞𝑘(𝑔) = [ℓ𝑣
𝑘, 𝑔] + ℓ𝑘 ∙ min

𝑗∈𝑅𝑘(𝑥̅)

𝑔𝑗

𝑐𝑗𝑘
 ,         𝑔 ∈ 𝑅𝑛.        
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Let us introduce the notation 

𝑞̃𝑘(𝑔) = ℓ𝑘 ∙ min
𝑗∈𝑅𝑘(𝑥̅)

𝑔𝑗

𝑐𝑗𝑘
 ,           (𝑘 ∈ 𝐼).                        

Thus, if a maximum is reached at a point 𝑥̅, then 

𝑞𝑘(𝑔) ≤ 0,   ∀ 𝑔 ∈ 𝐺𝑥̅(𝑉)

= {𝑔 ∈ 𝑅𝑛|[𝑃, 𝑔] = 0,   𝑔𝑖 ≥ 0,   ∀ 𝑖 ∈ 𝐼1(𝑥̅)},      

where 𝐼1(𝑥̅) the set is defined by formula (25). 

Lemma 4.2.2. The following conditions are equivalent: 

1. 𝑞𝑘(𝑔) ≤ 0, ,∀ 𝑔 ∈ Ω, 

2. ∃ 𝜇𝑘 > 0, ,𝜇𝑘 ∙ 𝑃 ∈ 𝜕𝑞𝑘 

where 𝜕𝑞𝑘 is the superdifferential of the function 𝑞𝑘. 

Lemma 4.2.3. The superdifferential 𝑞𝑘(𝑔)(𝑔 ∈ 𝑅𝑛) of the 

function  𝑞𝑘, defined above, has the form 

𝜕𝑞𝑘 = ℓ𝑣
𝑘 + 𝜕𝑞̅𝑘,    (𝑘 ∈ 𝐼), 

where  ℓ𝑣
𝑘 = (ℓ1 ∙ 𝑣𝑘1, … , ℓ𝑛 ∙ 𝑣𝑘𝑛), 

𝑞̃𝑘(𝑔) = ℓ𝑘 ∙ min
𝑗∈𝑅𝑘(𝑥̅)

𝑔𝑖

𝑐𝑖𝑘
 , 

and 

𝜕𝑞̃𝑘 = {𝑓 = ℓ𝑘 ∙ (𝑓1, … , 𝑓𝑛) | ∃ 𝛼𝑖 ≥ 0, ∑ 𝛼𝑖

𝑗∈𝑅𝑘(𝑥̅)

= 1, 

𝑓𝑖 =
𝛼𝑖

𝑐𝑖𝑘
,   𝑖 ∈ 𝑅𝑘(𝑥̅),   𝑓𝑖 = 0,   𝑖 ∈ 𝑄𝑘(𝑥̅)},    (𝑘 ∈ 𝐼).           

Lemma 4.2.4. The number 𝜇𝑘(𝑘 ∈ 𝐼) defined in Lemma 4.2.2 

is equal to: 

𝜇𝑘 =
ℓ𝑘 + ∑ ℓ𝑖 ∙ 𝑣𝑘𝑖 ∙ 𝑐𝑖𝑘𝑖∈𝑅𝑘(𝑥̅)

∑ 𝑃𝑖 ∙ 𝑐𝑖𝑘𝑖∈𝑅𝑘(𝑥̅)

(𝑘 ∈ 𝐼). 

Theorem 4.2.1. Let 𝑃 = (𝑃1, … , 𝑃𝑛) a strictly positive vector 

be given, the index 𝑘 ∈ 𝐼 and the number 𝜇𝑘 defined in Lemma 4.2.4. 
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A vector 𝑥 ̅ is a solution to the 𝑘 -th consumer problem that satisfies 

the relation if  𝐼1(𝑥̅) = ∅  if and only if  

1.     {
ℓ𝑖 ∙ 𝑣𝑘𝑖 = 𝜇𝑘 ∙ 𝑃𝑖 ,   ∀ 𝑖 ∈ 𝑄(𝑥̅),

ℓ𝑗 ∙ 𝑣𝑘𝑗 ≤ 𝜇𝑘 ∙ 𝑃𝑗 ,   ∀ 𝑗 ∈ 𝑅𝑘(𝑥̅),
 

2.     𝑃 ∈
1

𝜇𝑘
∙ (ℓ𝑣

𝑘 + 𝜕𝑞̃𝑘), 

where ℓ𝑣  
𝑘 , 𝜕𝑞̃𝑘, are defined in Lemma 4.2.3. 

Comment. If 𝑅𝑘(𝑥̅) = 𝐼 = {1, 2, … , 𝑛}, then the number 𝜇𝑘 

defined above is the maximum growth rate of the total wealth of 

the 𝑘- th industry 

Proposition 4.2.1. Under any conditions𝑚 ∈ 𝐼 

1. 𝑞𝑘(𝑔) ≤ 0 for all 𝑔 ∈ 𝐺𝑥̅(𝑉), 

2. 𝑞𝑚
𝑘 (𝑔̃) ≤ 0 for all 𝑔̃ ∈ 𝑇𝑚 

are equivalent. 

Theorem 4.2.2. Let a strictly positive vector 𝑃 = (𝑃1, … , 𝑃𝑛) 

be given 

1. If the vector 𝑥 ̅for which 

𝐼1(𝑥̅) ≠ ∅                                                 

is the maximum point in the problem of the 𝑘 − th consumer, then 

𝑚 ∈ 𝑄𝑘(𝑥̅) when the following relations are satisfied: 

{
 

 
ℓ𝑖

𝑃𝑖
𝑣𝑘𝑖 ≤

ℓ𝑚

𝑃𝑚
𝑣𝑘𝑚,     ∀ 𝑖 ∈ 𝑅𝑘(𝑥̅),

ℓ𝑗

𝑃𝑗
𝑣𝑘𝑖 =

ℓ𝑚

𝑃𝑚
𝑣𝑘𝑚,     ∀ 𝑗 ∈ 𝑄𝑘(𝑥̅)

             (∗) 

when the 𝑚 ∈ 𝑅𝑘(𝑥̅) are satisfied 

{
 

 
ℓ𝑖

𝑃𝑖
𝑣𝑘𝑖 ≤

ℓ𝑗

𝑃𝑗
𝑣𝑘𝑗 ,     ∀ 𝑖 ∈ 𝑅𝑘(𝑥̅),   𝑗 ∈ 𝑄𝑘(𝑥̅)

ℓ𝑗

𝑃𝑗
𝑣𝑘𝑖 =

ℓ𝑚

𝑃𝑚
𝑣𝑘𝑚,     ∀ 𝑖 ∈ 𝑅𝑘(𝑥̅).

     (∗∗) 
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2. Let 𝐼1(𝑥̅) ≠ ∅ and for some𝑚 hold (*) (if  𝑚 ∈ 𝑄𝑘(𝑥̅) ) or 

(**) (if  𝑚 ∈ 𝑄𝑘(𝑥)̅̅ ̅̅  then the vector𝑥̅ is a solution to the problem of 

the 𝑘 − th consumer. 

The third paragraph of Chapter 1V examines lossless 

equilibrium problems in models of economic dynamics with a fixed 

budget. 

Let 𝐼 = {1, 2, … , 𝑛} and 𝑥̅𝑘  be the maximum point in the 

consumer problem. 

Definition. We call an equilibrium {𝑃, 𝑥̅1∙, … , 𝑥̅𝑛∙, Λ, 𝑦} an 

equilibrium without losses  if for all 𝑘 ∈ 𝐼 
𝑅𝑘(𝑥̅𝑘∙) = 𝐼. 

Definition. Prices 𝑃 = (𝑝1, … , 𝑝𝑛) determined in equilibrium 

without losses will be called equilibrium prices without losses. 

Let us consider the problem of the  𝑘 -th consumer without 

losses. To study the problem, we apply necessary and sufficient 

extremum conditions, according to which𝑥̅ a maximum is reached at 

a point if and only if 

(𝑈𝑘)′(𝑥̅, 𝑔) ≤ 0    for all  𝑔 ∈ 𝐺𝑥̅(𝑉), 

where  𝐺𝑥̅(𝑉) = {𝑔 ∈ 𝑅
𝑛|[𝑃, 𝑔] = 0, 𝑔𝑖 ≥ 0, ∀ 𝑖 ∈ 𝐼1(𝑥̅)}. 

As is known, (𝑈𝑘)′(𝑥̅, 𝑔) = 𝑞𝑘(𝑔), where 

𝑞𝑘(𝑔) = [ℓ𝑣
𝑘, 𝑔] + ℓ𝑘 ∙ min

𝑗∈𝑅𝑘(𝑥̅)

𝑔𝑖

𝑐𝑖𝑘
(𝑘 ∈ 𝐼). 

Then in our case (without losses) we obtain that the necessary 

and sufficient conditions for optimality 𝑥̅ in the industry 𝑘 take the 

form: 

𝑞𝑘(𝑔) = [ℓ𝑣
𝑘, 𝑔] + ℓ𝑘 ∙ min

𝑗∈𝐼

𝑔𝑖

𝑐𝑖𝑘
≤ 0,      

∀ 𝑔 ∈ Ω = {𝑔 ∈ 𝑅𝑛|[𝑃, 𝑔] = 0}.     

Lemma 4.3.1. The number 𝜇𝑘(𝑘 ∈ 𝐼) defined in Lemma 4.2.4 

in the case without losses (𝑅𝑘(𝑥̅) = 𝐼) coincides with the maximum 

growth rate of the total wealth of the ith industry 𝑘 and is equal to  
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𝜇𝑘 =
ℓ𝑘 + [ℓ𝑣

𝑘, 𝑐∙𝑘]

[𝑃, 𝑐∙𝑘]
,      (𝑘 ∈ 𝐼),                                  

where  ℓ𝑣
𝑘 = (ℓ1 ∙ 𝑣𝑘1, … , ℓ𝑛 ∙ 𝑣𝑘𝑛). 

Theorem 4.3.1. Let 𝑃 = (𝑝1, … , 𝑝𝑛) a strictly positive vector 

be given, an index 𝑘 ∈ 𝐼 and a number 𝜇𝑘 defined by formula (25). 

The vector 𝑥̅ is the solution to the problem 

𝑈𝑘(ℓ, 𝑥) → 𝑚𝑎𝑥,   𝑥 ∈ 𝑉 = {𝑥 ≥ 0 |[𝑃, 𝑥] = 1}.       (29) 

satisfying the relation 

𝑅𝑘(𝑥̅) = 𝐼 
then and only when 

 1.     ℓ𝑗 ∙ 𝑣𝑘𝑗 ≤ 𝜇𝑘 ∙ 𝑝𝑗 ,      ∀ 𝑗 ∈ 𝑅𝑘(𝑥̅), 

 2.     𝑝 ∈
1

𝜇𝑘
(ℓ𝑣
𝑘 + 𝜕𝑞̃𝑘).  

Comment. Given 𝜇𝑘, the equality from Lemma 4.3.1 can be 

considered as a system of  𝑛 linear equations with respect to variables 

- the coordinates of the equilibrium price vector 𝑝 without losses: 

[𝑃, 𝑐∙𝑘] =
1

𝜇𝑘
∙ (ℓ𝑘 + [ℓ𝑣

𝑘 , 𝑐∙𝑘])(𝑘 ∈ 𝐼), 

where  𝑐∙𝑘 = (𝑐1𝑘, … , 𝑐𝑛𝑘)  and ℓ𝑣
𝑘 = (ℓ1 ∙ 𝑣𝑘1, … , ℓ𝑛 ∙ 𝑣𝑘𝑛), vice 

versa, at given prices 𝑝 the maximum growth rate 𝜇𝑘 of the total 

wealth of the 𝑘(𝑘 ∈ 𝐼) −th industry is uniquely determined from the 

equality in lemma 4.3.1. 

Lemma 4.3.2. Let the given numbers  ℓ𝑖 > 0, 𝜇𝑘 > 0, 𝑣𝑗𝑖 >

0, 𝑐𝑖𝑗 > 0(𝑖, 𝑗, 𝑘 ∈ 𝐼) and (𝑃, 𝑥1∙, … , 𝑥𝑛∙) be the lossless equilibrium 

in the model 𝑈𝑗 with utility functions, budgets 𝜆𝑗 = [𝑝, 𝑥𝑗] and 

distributed vector  𝑦 = ∑ 𝑥𝑖∙𝑛
𝑖=1 (𝑖 ∈ 𝐼). 

Relation 2) in Theorem 4.3.1 is satisfied for: ∀ 𝑘 ∈ 𝐼 if and 

only if for any 𝑣𝑗𝑖 ≥ 0 and 𝑢𝑗(𝑖, 𝑗 ∈ 𝐼) satisfying the equalities 

∑𝜇𝑗(𝑣𝑗𝑖 + 𝑢𝑗𝑐𝑖𝑗)

𝑗∈𝐼

= 0,      ∀ 𝑖 ∈ 𝐼,                                    

inequality holds 
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∑(∑𝜐𝑗𝑖 ∙ ℓ𝑖 ∙ 𝑣𝑗𝑖

𝑖∈𝐼

+ 𝑢𝑗 (ℓ𝑗 +∑ℓ𝑖 ∙ 𝑣𝑗𝑖 ∙ 𝑐𝑖𝑗

𝑖∈𝐼

))

𝑗∈𝐼

≤ 0.                

Lemma 4.3.3. Let the numbers  𝑣𝑗𝑖 ≥ 0, 𝑐𝑗𝑖 ≥ 0, (𝑖, 𝑗 ∈ 𝐼)  and 

the determinant |𝑐| ≠ 0 of the matrix be given. The following 

conditions are equivalent: 

1. numbers 𝜐𝑗𝑖 ≥ 0, 𝑢𝑗(𝑖, 𝑗 ∈ 𝐼), are such that the conditions 

of Lemma 4.3.2 are satisfied; 

2. ℓ𝑖𝜇𝑗(𝑖, 𝑗 ∈ 𝐼)numbers such that for∀ 𝑖, 𝑗 ∈ 𝐼 is satisfied 

3. ℓ𝑖 ∙ 𝑣𝑗𝑖 +
1

|𝑐|
∑ (−1)𝑖+𝑘+1

𝜇𝑗

𝜇𝑘
(ℓ𝑘 + ∑ ℓ𝑚 ∙ 𝑣𝑘𝑚 ∙𝑚∈𝐼𝑘∈𝐼

𝑐𝑚𝑘)|𝑐𝑖
𝑘| ≤ 0,     

where 𝑐𝑖
𝑘 is the (𝑛 − 1) × (𝑛 − 1)order matrix obtained from the 

matrix 𝑐 by removing the 𝑘 − th column and 𝑖 − th row. 

Theorem 4.3.4. Let the numbers 𝑣𝑗𝑖 ≥ 0, 𝑐𝑖𝑗 > 0 (𝑖, 𝑗 ∈ 𝐼) be 

such that and max
𝑗∈𝐼

𝑣𝑗𝑖 > 0. Equilibrium prices without losses for 

given, and some 𝑣𝑗𝑖, 𝑐𝑖𝑗 , ℓ𝑖 > 0 , (𝑖 ∈ 𝐼) exist if and only if the 

inequality in the second paragraph of Lemma 4.3.3 is satisfied; in 

this case, the coefficients 𝜇𝑘(𝑘 ∈ 𝐼) and equilibrium prices 𝑃 are 

related by the formula 

𝜇𝑘[𝑃, 𝑐∙𝑘] = ℓ𝑘 + [ℓ𝑣
𝑘, 𝑐∙𝑘](𝑘 ∈ 𝐼),                         

where 𝑐∙𝑘 = (𝑐1𝑘, … , 𝑐𝑛𝑘)ℓ𝑣
𝑘 = (ℓ1 ∙ 𝑣𝑘1, … , ℓ𝑛 ∙ 𝑣𝑘𝑛). 

Let's enter the numbers 

𝑑𝑖
𝑘𝑗
=

{
 
 
 

 
 
 ℓ𝑖𝑣𝑗𝑖 + (−1)𝑖+𝑗+1

|𝑐𝑖
𝑗
|

|𝑐|
(ℓ𝑗 +∑ℓ𝑚 ∙ 𝑣𝑗𝑚 ∙ 𝑐𝑚𝑗

𝑚∈𝐼

) ,

𝑖𝑓  𝑘 = 𝑗  (𝑖, 𝑗, 𝑘 ∈ 𝐼),

(−1)𝑖+𝑘+1
|𝑐𝑖
𝑘|

|𝑐|
(ℓ𝑘 +∑ℓ𝑚 ∙ 𝑣𝑘𝑚 ∙ 𝑐𝑚𝑘

𝑚∈𝐼

),    

𝑖𝑓   𝑘 ≠ 𝑗,
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and vector 

𝑑̃𝑘𝑗 =

(

 
 
−𝑑1

𝑘𝑗

⋮
⋮

−𝑑𝑛
𝑘𝑗

)

 
 
(𝑘, 𝑗 ∈ 𝐼).      

Proposition 4.3.1. The number 𝜇𝑗(𝑗 ∈ 𝐼), exists if and only if 

there 𝑘0 ∈ 𝐼 is an index and such that  𝛽𝑘 

𝛽𝑘0 > 0,      ∑𝛽𝑘𝑑̃𝑘𝑗
𝑛2

𝑘=1

≥ 0     (𝑗 ∈ 𝐼),                                

where 𝑑̃𝑘𝑗 defined above. 

In the fourth paragraph of Chapter 1V, using an equilibrium 

mechanism without losses, trajectories are constructed in the model 𝑍 

, which is specified by the mapping   

𝑎(𝑥) = {𝑥̃ = (𝑥̃1∙, … , 𝑥̃𝑛∙) ∈ (𝑅+
𝑛)𝑛 |∑𝑥̃𝑘𝑖

𝑛

𝑘∈𝐼

≤∑𝑣𝑘𝑖𝑥𝑘𝑖
𝑛

𝑘∈𝐼

+ 

+min
𝑗∈𝐼

𝑥𝑖𝑗

𝑐𝑗𝑖
,     𝑥𝑘 = (𝑥𝑘1, … , 𝑥𝑘𝑛),    𝑘 ∈ 𝐼,   𝑣𝑘𝑖 ∈ [0, 1], 

𝑐𝑖𝑗 > 0,   (𝑖, 𝑗 ∈ 𝐼)} . 

Recall that the equilibrium (𝑃, 𝑥1∙, … , 𝑥𝑛∙, 𝑦) is the se, and if 

equilibrium exists, then the vector 𝑥𝑘∙is necessarily proportional to 

the vector 𝑐∙𝑘(𝑘 ∈ 𝐼). If 𝑦 ∉ 𝑐𝑜𝑛𝑒{𝑐∙𝑖|𝑖 ∈ 𝐼}, then equilibrium 

certainly does not exist. 

Therefore, it is advisable to provide a necessary and sufficient 

condition for the existence of equilibrium prices without losses. 

According to Fang Zi's theorem3 the necessary conditions for the 

non-existence of equilibrium prices without losses can be formulated 

as 

                                                 
3 Fang Ji. On systems of linear inequalities // In the book: Linear inequalities and 

related issues. M., IL, 1953, p.214. 
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∑𝜐𝑗𝑖

𝑗∈𝐼

= −∑𝑢𝑗𝑐𝑖𝑗

𝑗∈𝐼

,       ∀ 𝑖 ∈ 𝐼,       (𝑎)               

for which the inequality hold 

∑(∑𝜐𝑗𝑖ℓ𝑖𝑣𝑗𝑖

𝑖∈𝐼

+ 𝑢𝑗 (ℓ𝑗 +∑ℓ𝑖𝑣𝑗𝑖𝑐𝑖𝑗

𝑖∈𝐼

))

𝑗∈𝐼

> 0.        (𝑏) 

 

Let us introduce sets of indices 

𝐽1(𝑖) = {𝑗 ∈ 𝐼 |𝑣
𝑗𝑖 = max

𝑘∈𝐼
𝑣𝑘𝑖},   ∀ 𝑖 ∈ 𝐼,

𝐽2(𝑖) = {𝑗 ∈ 𝐼 |ℓ
𝑗 + 𝑣𝑗𝑖𝑐𝑖𝑗 = min

𝑘∈𝐼
(ℓ𝑘 + 𝑣𝑘𝑖𝑐𝑖𝑘)},   ∀ 𝑖 ∈ 𝐼.

  

Let the vectors ℓ = (ℓ1, … , ℓ𝑛) be normalized by the relation:  

∑ℓ𝑖 = 1,    ℓ𝑖 > 0,    (𝑖 ∈ 𝐼).                

Occurs 

Lemma 4.4.1. Let the conditions be met 

∑ℓ𝑖 = 1,    ℓ𝑖 > 0,    (𝑖 ∈ 𝐼),               

and inequality 

max
𝑖∈𝐼

𝑣𝑗𝑖

|𝐽1(𝑖)|
∙ ∑ 𝑐𝑖𝑗

𝑗∈𝐽1(𝑖)

> min
𝑗∈𝐼

(ℓ𝑗 + 𝑣𝑗𝑖𝑐𝑖𝑗) ,     𝑖 ∈ 𝐼,                   

where |𝐽1(𝑖)| is the number of elements in the set of indices 𝐽1(𝑖). In 

this case, there are numbers 𝑢𝑗(𝑖, 𝑗 ∈ 𝐼) and satisfying condition (a) 

for which (c) holds.                    

Theorem 4.4.1. Let the numbers 𝑣𝑗𝑖 ≥ 0, ℓ𝑖 > 0(𝑖, 𝑗 ∈ 𝐼), be 

such that max𝑣𝑗𝑖 > 0,∑ ℓ𝑖𝑖∈𝐼 = 1𝜇𝑗 = 1(𝑗 ∈ 𝐼).  If equilibrium 

prices without losses for given  𝑣𝑗𝑖 , ℓ𝑖 and some 𝑐𝑖𝑗 > 0(𝑖, 𝑗 ∈ 𝐼) 

exist, then an inequality of the form holds: 
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 min
𝑗∈𝐼

(
max
𝑗∈𝐼

𝑣𝑗𝑖

|𝐽1(𝑖)|
∑ 𝑐𝑖𝑗

𝑗∈𝐽1(𝑖)

−min
𝑗∈𝐼

(ℓ𝑖 + 𝑣𝑗𝑖𝑐𝑖𝑗)) ≤ 0. 

Let's consider the Neumann-Gale model and define the 

Neumann equilibrium state in this model 𝑍. Recall that the non-

degenerate case is that  

𝛼∑𝑥̅𝑘𝑖

𝑘∈𝐼

=∑𝑣𝑘𝑖𝑥̅𝑘𝑖

𝑘∈𝐼

+min
𝑗∈𝐼

𝑥̅𝑖𝑗

𝑐𝑗𝑖
 ,      ∀ 𝑖 ∈ 𝐼.             (30) 

Theorem 4.4.2. A Neumann equilibrium state satisfying 

equality (30) can be constructed using a lossless equilibrium model 

for ℓ =
1

𝛼
𝑃, 𝜇𝑘 = 1(𝑘 ∈ 𝐼). 

The fifth paragraph of Chapter 1V examines the effective 

trajectories of the model 𝑍. 

Let be 𝑥𝑡 = (𝑥𝑡
1∙, … , 𝑥𝑡

𝑛∙) the effective trajectory of this model. 

This trajectory admits the characteristic 𝐿𝑡 = (ℓ𝑡
1, … , ℓ𝑡

𝑛). Here ℓ𝑡
𝑖∙ ∈

𝑅+
𝑛. We can assume that  𝐿𝑡 = (ℓ𝑡, … , ℓ𝑡), where ℓ𝑡 = (ℓ𝑡

1, … , ℓ𝑡
𝑛) ∈

𝑅+
𝑛 

It is believed that for all ℓ𝑡
𝑖 > 0, where ℓ𝑡

𝑖  is the price of 

the 𝑖 −th product at time 𝑡. Let's define the functions 𝑈𝑡
𝑘(ℓ𝑡+1, 𝑥) 

 𝑈𝑡
𝑘(ℓ𝑡+1, 𝑥) = [ℓ𝑡+1, 𝐵𝑡

𝑘 ∙ 𝑥] + ℓ𝑡+1
𝑘 ∙ 𝐹𝑡

𝑘(𝑥).            (31) 
Recall that the number 

𝜇𝑡
𝑘(𝑥) =

𝑈𝑡
𝑘(ℓ𝑡+1, 𝑥)

[ℓ𝑡, 𝑥]
 ,      𝑘 ∈ 𝐼                       (32) 

is the growth rate of the total wealth of the 𝑘 − th industry in the 

state 𝑥 at prices ℓ𝑡+1and ℓ𝑡. 
Let there be equality 

𝑅(𝑥̅𝑡
𝑘∙) = 𝐼      for all    𝑘  and 𝑡.                         

The equilibrium mechanism in the case of 𝑅(𝑥̅𝑡
𝑘∙) =

𝐼(𝑘 ∈ 𝐼)𝑡 = 1,2, …, will be called an equilibrium mechanism without 

losses. 

We will say that in the model 𝑍 it is possible to construct a 

trajectory (𝑥𝑡)𝑡=1
∞  using an equilibrium mechanism without losses if 

at any moment 𝑡 of time the vectors 𝑥̅𝑡
𝑘∙ that make up the state 𝑥𝑡 of 
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this trajectory fall into a conical shell spanned by vectors of the form 

𝑐∙𝑘(𝑘 ∈ 𝐼). 
Let 𝑥̅ be the Neumann equilibrium vector. 

Lemma 4.5.1. Let (𝑥𝑡)𝑡=1 
∞ the trajectory of the model 𝑍 be 

given, which has the following properties: the vector𝑥𝑡 is constructed 

as part of the equilibrium in the model 𝑀 = ({𝑦}, 𝑈𝑡(ℓ𝑡+1), Λ𝑡, 𝑉), 

where 𝑉 = (𝑅+
𝑛, … , 𝑅+

𝑛), 𝑦 = (𝐵𝐹)𝑡−1(𝑥𝑡−1), and the vector of 

budgets Λ𝑡 = (𝜆𝑡
1, … , 𝜆𝑡

𝑛) is chosen so 𝜇𝑡
𝑘 = 1 that the growth rate is, 

while the equilibrium prices ℓ𝑡 = (ℓ𝑡
1, … , ℓ𝑡

𝑛) coincide with, and the 

budgets 𝜆𝑡
𝑘 are associated with the equalities 𝜆𝑡

𝑘 = [ℓ𝑡, 𝑥𝑡
𝑘∙]. 

Then 𝐿𝑡 = (ℓ𝑡, … , ℓ𝑡) is the characteristic of the trajectory (𝑥𝑡). 

Note 1. The characteristic (𝐿𝑡) (𝐿 = (ℓ𝑡, … , ℓ𝑡)) of the 

trajectory (𝑥𝑡) is constructed inductively using the formula 

𝛽𝑡+1 = 𝑐𝑡+1
−1 (𝐸 + 𝑐𝑡

𝑣)𝛽𝑡,       𝑡 = 1, 2, ….         

and  ℓ𝑡+1 ≫ 0 and the vectors 𝑥𝑡
𝑘∙ that make up the state𝑥𝑡 of this 

trajectory are determined by the formula 

𝑥𝑡
𝑘∙ =

𝜆𝑡
𝑖

[ℓ𝑡, 𝑐𝑡
∙𝑘]
∙ 𝑐𝑡

∙𝑘,     𝑘 ∈ 𝐼.    

Note 2. If the sequence (ℓ𝑡) that is inductively constructed for 

the initial vector ℓ is not a characteristic of the trajectory (𝑥𝑡), then 

for some 𝑡 the equality does not hold: 

(𝐵𝐹)𝑡(𝑥𝑡) = ∑𝑥𝑡+1
𝑖∙

𝑛

𝑘=1

=∑𝜆𝑡+1
𝑖 𝑥̅𝑡+1

𝑛

𝑘=1

,    𝑡 = 1, 2, …,            

or the condition is violated 

ℓ𝑡+1 ≫ 0,     𝑡 = 1, 2, …. 

Theorem 4.5.1. Let the model 𝑍 have only one fund-forming 

industry and numbers 𝑣𝑖(𝑖 ∈ 𝐼) such that 

𝑣𝑖 <
𝑐1𝑖

∑ 𝑐1𝑘 ∙ 𝑐𝑘𝑖𝑛
𝑘=2

. 
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Then from any initial state  𝑥1 ≠ 𝜆 𝑥̅, (𝜆 ≥ 0) it is impossible 

to construct an effective trajectory (𝑥𝑡)𝑡=1
∞  using an equilibrium 

mechanism without losses. 

The sixth paragraph of this chapter is devoted to the asymptotic 

behavior of the trajectories of reproduction models. 

When studying the formulated reproduction model, a 

model with fixed budgets is used, which has the form 

𝔐 = ({𝑦}, 𝑈,∧), 

here 𝑦 ≫ 0 is some element of the cone  𝚁+
𝑛, where 𝑈 =

𝑈𝑖, … , 𝑈𝑛 are the utility functions 𝑈𝑖defined by the  

𝑈𝑖(𝑓,̅ 𝑥𝑖) = [𝑓,̅ 𝐵𝑖𝑥𝑖  ] + 𝑓̅𝑖𝐹𝑖(𝑥𝑖),         (𝑖 = 1, 𝑛̅̅ ̅̅ ̅ ). 

In essence, 𝑈𝑖(𝑖 = 1, 𝑛̅̅ ̅̅ ̅  ) the functions represent the cost of all 

the funds hat the corresponding industry has, at prices 𝑓̅ =

(𝑓̅1, . . , 𝑓̅𝑛). 

The set of vectors  (𝜌, 𝑥̅1𝑥̅𝑛),…, forms an equilibrium state 

in the model  𝔐, if the vectors 𝑥̅𝑖 are solutions to problems 

𝑈𝑖(𝑓,̅ 𝑥𝑖) → max      (𝑖 = 1, 𝑛̅̅ ̅̅ ̅) 

under conditions [𝜌, 𝑥𝑖] = 𝜆𝑖 , 𝑥
𝑖 ≥ 0, and in addition, the 

relations are satisfied 

∑𝑥̅𝑖
𝑛

𝑖

= 𝑦, 𝜌 ≥ 0. 

Let us introduce the function (𝑓, 𝑥𝑖) = 𝛽𝑖∇𝑥𝑈
𝑖(𝑓, 𝑥𝑖) into 

consideration. As is known, the equilibrium vector 𝑋̃ =

(𝑥̃1, … , 𝑥̃𝑛) is a solution to the equation 𝛹(𝑓, 𝑋) = 0, where 

𝛹 = (𝜓1, … . , 𝜓𝑛) is a mapping into (𝑅+
𝑛)𝑛 itself having 

coordinate functions 

𝜓𝑖(𝑋) = 𝜏𝑖(𝑓, 𝑥
𝑖) − 𝜏𝑖+1 (𝑓, 𝑥𝑖+1) 

at 
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1 ≤ 𝑖 ≤ 𝑛 − 1,                 𝜓𝑛(𝑋) =∑𝑥𝑖
𝑛

1

− 𝑦. 

We study the system 𝛹(𝑓, 𝑋) = 0 in order to find out how the 

growth rate of the trajectory constructed using the model changes 

The following lemma is true. 

Lemma 4.6.1. The function 𝛹(𝑓, 𝑥) is differentiable with 

respect to 𝑋. In this case, 
𝜕𝛹

𝜕𝑋 
 it coincides with the following 

block matrix 

(

 
 
 
 

𝛽1(𝑓̅
1 + ∆𝑓1)𝐴1 − 𝛽2(𝑓̅

2 + ∆𝑓2)𝐴2            0                    …          0                             0     

 0                                  𝛽2 (𝑓̅
2 + ∆𝑓2)𝐴2 − 𝛽3(𝑓̅

3 + ∆𝑓3)𝐴3  …        0                             0      
  .      .      .        .      .      .     .       .         .         .      .        .       .     . ..         .       .        .        .      .      .       
 .       .     .         .            .           .       .       .        .        .                …     .       .       .              .                .     
0                                      0         0     𝛽𝑛−1(𝑓̅

𝑛−1 + ∆𝑓𝑛−1) − 𝛽𝑛(𝑓̅
𝑛 + ∆𝑓𝑛)𝐴𝑛                   

  𝙸                                   𝙸           𝙸                                                                                  𝙸        𝙸       )

 
 
 
 

 

where 𝜑𝑖  is the matrix of second partial derivatives 𝐴𝑖 =

∇𝑥
2𝜑𝑖(𝑥̃

𝑖) of the function 𝜑𝑖 calculated at the point 𝑥̃𝑖. 

Theorem 4.6.1. The rates of change in the states 𝑦𝑖 of 

the 𝑖 − th (𝑖 = 1, 𝑛 − 1) industry are expressed linearly through 

the coordinates of the vector 𝑦𝑛. 

Theorem 4.6.2. Let 𝑀𝑖 = 𝑚𝑎𝑥 {
𝑥1
𝑖

𝑥1
𝑛  , … ,

𝑥𝑛
𝑖

𝑥𝑛
𝑛}. If there are 

sufficiently small ones ∆𝑖> 0𝑗 = 1, 𝑛̅̅ ̅̅ ̅ such that for all 𝑗 = 1, 𝑛̅̅ ̅̅ ̅, 

then for any sufficiently small ones |
𝑥𝑗
𝑖

𝑥𝑗
𝑛 −𝑀

𝑖| < ∆𝑖 the 

following equality is true 

|𝑦𝑘
𝑖 −

𝑎12
𝑛 𝓆𝑛

𝑎12
𝑖 𝓆𝑖

𝑦𝑘
𝑛| < 𝜀𝑖        (𝑖 = 2, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅    , 𝑘 = 1, 𝑛̅̅ ̅̅ ̅). 

Consequence. Under the conditions of the theorem, the 

signs of the coordinates 𝑦𝑖𝑎 ≤ 𝑖 ≤ 𝑛 − 1 of the vectors 𝑦𝑛 at 

coincide with the signs of the coordinates of the vector  𝑦1. The 
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coordinates of the vector have signs opposite to the signs of the 

corresponding coordinates of other vectors. 

Lemma 4.6.7. Given a matrix 𝐶 = (𝐶𝑖𝑗)𝑖,𝑗=1
𝑛

 such that 

𝐶𝑖𝑗 =

{
 

 
(3 − 𝑛)𝑥𝑖

2

𝑥1𝑥2
 , 𝑖 = 𝑗

𝑥𝑖𝑥𝑗

𝑥1𝑥2
 ,          𝑖 ≠ 𝑗,

 

where 𝑥0 = (𝑥1𝑥2, … . , 𝑥1𝑥2)  is a vector with positive 

coordinates. Then for 𝑥𝑖  non-negative matrix  𝒜 = 𝐶 + 𝜇𝙸 

where     𝜇 = (𝑛 − 3)max
𝑘=1,𝑛̅̅̅̅̅

 
𝑥𝑘
2

𝑥1𝑥2  
 and vector 𝑥0 =

(𝑥1𝑥2, … . , 𝑥1𝑥2)  the inequality holds 

𝒜𝑥0 ≤ 𝜉𝑥0. 

Lemma 4.6.8. When 𝑛 > 3 for  1 ≤ 𝑖 ≤ 𝑛 is a fair 

estimate 

‖𝐶𝑖
−1‖ ≤

𝜉𝑖 + 𝜇𝑖

2(𝑛 − 2)|𝓆𝑖𝑎12
𝑖 |
, 

where 

𝜇𝑖 = (𝑛 − 3)max
𝑘=1,𝑛̅̅̅̅̅

(𝑥𝑘
𝑖 )
2

𝑥1
𝑖𝑥2
𝑖
, 𝜉𝑖 = max

𝑘=1,𝑛̅̅̅̅̅
∑𝑎̅𝑘𝑗

𝑖

𝑛

𝑗=1

, 

here  𝑎̅𝑘𝑗
𝑖  are the elements of matrices 𝒜𝑖 constructed similarly 

to the matrix 𝒜 from Lemma 4.6.7.  

Theorem 4.6.4. For there is an estimate   𝑦𝑘   (𝑘 = 1, 𝑛̅̅ ̅̅ ̅) 

          ‖𝑦𝑘‖ ≤
𝐿̅2

(𝓆𝑝𝑎12
𝑝 )

2
‖𝐾−1‖{𝛽1 ‖

𝜕𝐹1

𝜕𝑥1
‖ + 

=
𝛿

2
[𝑘(𝑘 − 1) + (𝑛 − 𝑘)(1 + 𝑛 − 𝑘)]. 

Chapter V examines the model 𝑍2, which is a special case of 

the model 𝑍 studied in previous chapters. A two-sector model 𝑍2 of 
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the economy is considered, the first sector of which produces means 

of production, the second - consumer goods. The equilibrium 

mechanism for constructing trajectories is studied in relation to the 

model. It turns out under what conditions equilibrium mechanisms, 

determined by Leontief production functions, generate effective 

trajectories.  

The first paragraph of Chapter V provides a description of the 

model 𝑍2. The vector  𝑋𝑡 = (𝑋𝑡
1, 𝑋𝑡

2) ∈ (𝑅+
2)2 is the state of the 

model; here 𝑋𝑡
𝑖 = (𝐾𝑡

𝑖, 𝐿𝑡
𝑖 ) ∈ 𝑅+

2 , 𝐾𝑡
𝑖 – fixed assets, 𝐿𝑡

𝑖 , 𝑖(𝑖 = 1, 2) – 

labor force in the 𝑖 −th sector. The production activity of the 𝑖-th 

sector at the moment 𝑡 is described using the production function 

𝐹𝑡
𝑖 ∶   𝑅+

2 → 𝑅+ and safety coefficients 0 ≤ 𝑣𝑡
𝑖 ≤ 1(𝑖 = 1, 2). The 

wage rate (specific consumption)  𝜔𝑡 > 0 is considered to be known, 

coinciding in the first and second sector. 

The transition from state 𝑋𝑡 = (𝐾𝑡
1, 𝐿𝑡

1, 𝐾𝑡
2, 𝐿𝑡

2) to state 𝑋𝑡+1 =
(𝐾𝑡+1

1 , 𝐿𝑡+1
1 , 𝐾𝑡+1

2 , 𝐿𝑡+1
2 ) is carried out using a system of inequalities 

 

{

𝐾𝑡+1
1 + 𝐾𝑡+1

2 ≤ 𝑣𝑡
1 ∙ 𝐾𝑡

1 + 𝑣𝑡
2 ∙ 𝐾𝑡

2 + 𝐹𝑡
1(𝐾𝑡

1, 𝐿𝑡
1),

𝜔𝑡+1(𝐿𝑡+1
1 + 𝐿𝑡+1

2 ) ≤ 𝐹𝑡
2(𝐾𝑡

2, 𝐿𝑡
2),

𝐾𝑡
𝑖 ≥ 0,    𝐿𝑡

𝑖 ≥ 0,   (𝑖 = 1, 2),

 

where 

𝐹𝑡
𝑖(𝐾𝑡

𝑖, 𝐿𝑡
𝑖 ) = min (

𝐾𝑡
𝑖,𝑗

𝐶𝑡
𝑖,𝑗
,   
𝐿𝑡
𝑖,𝑗

𝐶𝑡
𝑗,𝑖
) ,    (𝑖, 𝑗 = 1, 2),            

𝐶𝑡
𝑗𝑖
> 0,   (𝑖, 𝑗 = 1, 2). 

It is clear that the model 𝑍2 coincides with the model 𝑍 for 𝑛 =
2 and matrices 𝐵𝑡 

𝑖 having the form 

𝐵𝑡
𝑖 = (𝑣𝑡

𝑖 0
0 0

) (𝑖 = 1, 2) . 

When studying the model 𝑍2, the simplest superlinear 

mapping 𝑎 of the form is used 

𝑎(𝐾, 𝐿) =                                                      

= {(𝐾 ′, 𝐿′)|𝐾 ′ ≥ 0, 𝐿′ ≥ 0, 𝐾 ′ +𝜔𝐿′ ≤ 𝑣𝐾 +min (
𝐾

𝑐1
,
𝐿

𝑐2
) , (𝐾, 𝐿 ≥ 0)}, 
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where 𝑐1 > 0, 𝑐2 > 0. 

The Neumann-Gale model 𝑍̃, defined by the mapping 𝑎, will 

be written in the form 𝑍̃ = (𝑣, 𝜔, 𝑐1, 𝑐2). 

Consider the function 

𝑓(𝜂) = min (
𝜂

𝑐1
,
1

𝑐2
) ,    (𝜂 > 0)                                

and enter the number 

𝛽 =
𝑐1

𝑐2
 .                                                     

Occurs 

Lemma 5.1.1. Let 

𝑔(𝜂) =
𝑣𝜂 + 𝑓(𝜂)

𝜂 + 𝜔
 ,    (𝜂 > 0),                                  

where 𝑣 , 𝜔 are some constants. Then, if 𝜔 ∙ 𝑣 <
1

𝑐2
  𝑡hen the 

function 𝑔 reaches a maximum on the interval (0, +∞), and at a 

single point𝜂̅ = 𝛽. If 𝜔 ∙ 𝑣 >
1

𝑐2  
 then the function 𝑔 strictly increases 

on this interval. In the case, 𝜔 ∙ 𝑣 =
1

𝑐2
 the function 𝑔 reaches a 

maximum on the interval (0, +∞), at all points  𝜂̅ ≥ 𝛽, and  

max
𝜂>0

𝑔(𝜂) = 𝑣 

Proposition 5.1.1. Let's consider the model  𝑍̃ = (𝜔, 𝑐1, 𝑐2, 𝑣). 

Let the point 𝑋̅ = (𝐾̅, 𝐿̅) be that 

max
𝐾≥0,   𝐿≥0
𝐾+𝜔∙𝐿≠0

𝑣 ∙ 𝐾 + min (
𝐾

𝑐1
,
𝐿

𝑐2
)

𝐾 + 𝜔 ∙ 𝐿
=
𝑣 ∙ 𝐾̅ + min (

𝐾̅

𝑐1
,
𝐿̅

𝑐2
)

𝐾̅ + 𝜔 ∙ 𝐿̅
                 

and 𝐾̅ + 𝜔 ∙ 𝐿̅ = 1. Let's put it  𝑝̅ = (1, 𝜔). Then the triple 

(𝛼(𝑍̃), 𝑥̅, 𝑝̅) forms the equilibrium state of the model (𝜔, 𝑣, 𝑐1, 𝑐2), 

and  

   1. if  𝜔𝑣 <
1

𝑐2
, then 𝐾̅ =

𝑐1

𝑐1+𝜔∙𝑐2
 , 𝐿̅̅̅̅ =

𝑐2

𝑐1+𝜔∙𝑐2
,  
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   2. if 𝜔𝑣 =
1

𝑐2
, then   

𝐾̅

𝐿̅
>

𝑐1

𝑐2
, 

   3. if  𝜔𝑣 >
1

𝑐2
, then 𝐾̅ = 1, 𝐿̅ = 0.  

The second paragraph of the fifth Chapter is devoted to the 

study of the stationary case of the model 𝑍2, described in §5.1:  𝑣𝑡
𝑖 =

𝑣𝑖𝜔𝑡 = 𝜔, 𝑐𝑡
𝑖𝑗
= 𝑐𝑖𝑗 , 𝑡 = 0, 1, …, for all (𝑖, 𝑗 = 1, 2). In this case, the 

model 𝑍2 turns into a Neumann-Gale model  𝑍̅2, which we denote 

by. It is determined by the mapping 

𝑎(𝐾1, 𝐿1, 𝐾2, 𝐿2) = {(𝐾1
1, 𝐿1

1 , 𝐾2
1, 𝐿2

1)| 0 ≤ 𝐾1
1 + 𝐾2

1 ≤  

≤ 𝑣1𝐾1 + 𝑣
2𝐾2 +min (

𝐾1
𝑐11

,
𝐿1
𝑐21

),                    (33) 

0 ≤ 𝜔(𝐿1
1 + 𝐿2

1) ≤ min (
𝐾2
𝑐12

,
𝐿2
𝑐22

),   𝐾𝑖 ≥ 0,   𝐿𝑖 ≥ 0,   (𝑖 ≠ 1, 2)} . 

Let us introduce models 𝑍1(𝑏), 𝑍2(𝑏) for some 𝑏 > 0, defined 

respectively by sets 

 (𝑣1, 𝑏𝜔, 𝑐11, 𝑐21),    (𝑣2, 𝑏𝜔,
1

𝑏
𝑐12,

1

𝑏
𝑐22)              (34) 

and numbers 

 𝛽1 =
𝑐11

𝑐21
 ,          𝛽2 =

𝑐12

𝑐22
.                                  (35) 

To each of the sets (34) we associate the numbers 𝛼𝑖(𝑏), 𝜂̅
𝑖 by 

Lemma 5.1.1 

𝜂̅1 = 𝛽1,     𝛼1(𝑏) =
1 + 𝑣1𝑐11

𝑐11 + 𝑏𝜔𝑐21
 

and 

  

𝜂̅2 = 𝛽2,     𝛼2(𝑏) =
𝑏 + 𝑣2𝑐12

𝑐12 + 𝑏𝜔𝑐22
 .                   

Lemma 5.2.1. Let 

𝑣2 − 𝑣1 <
1

𝑐11
 ,       𝛽1 ≠ 𝛽2.                       (36) 

Then the equation is where 𝑏 = 𝑉(𝑏) 

𝑉(𝑏) = (1 + 𝑣1𝑐11)
𝑐12 + 𝑏𝜔𝑐22

𝑐11 + 𝑏𝜔𝑐21
− 𝑣2𝑐12 , 
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has only one positive solution 𝑏̅. In this case, the relation 𝑏 < 𝑉(𝑏)is 

equivalent to inequality 0 < 𝑏 < 𝑏̅. 

Proposition 5.2.1. Let the conditions 𝛽1 > 𝛽2 of Lemma 5.2.1 

be satisfied and the sequence 𝑏𝑡 satisfies the equalities 𝑏𝑡+1 =

𝑉(𝑏𝑡)(𝑡 = 0, 1, 2, … ) and  𝑏0 > 0. Then 𝑏𝑡 → 𝑏̅, and if  𝑏0 < 𝑏̅, 

then  𝑏𝑡 increases, if  𝑏0 > 𝑏̅, then 𝑏𝑡 decreases. 

Theorem 5.2.1. Let 𝜔𝑣2 <
1

𝑐22
, conditions (33) be satisfied and 

the number 𝑏̅ defined as in Lemma 5.2.1. The number 𝛼 = 𝛼1(𝑏̅) =

𝛼2(𝑏̅) is then the model's 𝑍̅2 Neumann growth rate; the functional 

𝑝̅ = (1, 𝑏̅ ∙ 𝜔, 1, 𝑏̅ ∙ 𝜔) is Neumann equilibrium prices; the Neumann 

equilibrium vector 𝑥̅ = (𝐾̅1, 𝐿̅1, 𝐾̅2, 𝐿̅2) is defined ratios: 

𝐾̅1

𝐿̅1
= 𝛽1 ,     

𝐾̅2

𝐿̅2
= 𝛽2 ,     

𝐿̅1

𝐿̅2
=
(
1

𝑐22
− 𝜔𝑣2) ∙ 𝑐12

(𝑏̅ + 𝑣2𝑐12) 𝜔
, 

where, 𝛽1, 𝛽2 are defined by formula (35). 

Let us describe, in relation to the model 𝑍̃2, the equilibrium 

mechanism for constructing model 𝑍 trajectories, discussed in §3.1. 

Let the vector of prices ℓ = (ℓ1, ℓ2), ℓ1 > 0, ℓ2 > 0 be given. 

Without loss of generality, we believe that it will be convenient for 

us to write the price of funds ℓ2 in the form ℓ2 = 𝑏𝜔, thus the price 

vector ℓ has the form ℓ = (1, 𝑏𝜔), where ℓ > 0 and 𝑏is the price of a 

consumption unit. Consider the expected total wealth of divisions at 

these prices and resource vector 𝑥 = (𝐾, 𝐿): 

𝑈1(ℓ, 𝑥) = 𝑣1𝐾 +min (
𝐾

𝑐11
,
𝐿

𝑐21
) ,

𝑈2(ℓ, 𝑥) = 𝑣2𝐾 +min (
𝐾

𝑐12
,
𝐿

𝑐22
) .

  

Further, 𝑈1 and 𝑈2  act as functions of the utility of the units. 

Let be the vector 𝑦 = (𝐾, 𝐿) of distributed resources; 𝜆1, 𝜆2  – given 
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department budgets. Let us consider an equilibrium model 𝑀 with 

fixed budgets, determined by the quantities (𝐾, 𝐿). 

Let's put 

𝑝 = (𝑝1, 𝑝2),   𝛽 =
𝐾

𝐿
,    𝛽1 =

𝑐11

𝑐21
 ,

𝛽2 =
𝑐11

𝑐22
 ,    𝑢1 =

1

𝑣1𝑐21
 ,    𝑢2 =

𝑏

𝑣2𝑐22
 .

                        

Recall that a set (𝑝, 𝑥1, 𝑥2) is an equilibrium state (see §1.5) in 

the model  𝑀, if 

𝑥1 + 𝑥2 = 𝑦                                                   

and the vector 𝑥𝑖  is the solution to the problem 

𝑈𝑖(ℓ, 𝑥) → 𝑚𝑎𝑥  given that, 𝑥 ≥ 0, [𝑝, 𝑥𝑖] ≤ 𝜆𝑖, (𝑖 = 1,2).   

Proposition 5.2.3. Let 𝑝 = (𝑝1, 𝑝2) be some prices. Then 

1) if 𝑝1 = 0, 𝑝2 > 0, then the equilibrium state (𝑝, 𝑥1, 𝑥2) does 

not exist; 

2) if 𝑝2 = 0, 𝑝1 > 0, then the set (𝑝, 𝑥1, 𝑥2), where 

𝑝1 =
1

𝛽ℒ
(𝜆1 + 𝜆2),     𝑝2 = 0,     𝑥1 =

𝜆1

𝑝1
(1,

1

𝛽1
),    

𝑥2 =
𝜆2

𝑝2
(1,

1

𝛽2
),    

(here 𝛽, 𝛽1, 𝛽2, defined above) is an equilibrium state if and only if 

𝜇 > 0    and    𝛽 = 𝛽1 = 𝛽2.   

Proposition 5.2.4. Let  𝑢2 ≤
𝑝2

𝑝1
≤ 𝑢1(𝑝1 > 0,   𝑝2 > 0) where 

the numbers, 𝑢1, 𝑢2, 𝛽, 𝛽1, 𝛽2, are defined above. Then the 

set (𝑝, 𝑥1, 𝑥2) is an equilibrium state in the model 𝑀 if and only if 

1) 𝑥1 =
𝜆1

𝑝1𝛽1 + 𝑝2
(𝛽1, 1),      𝑥2 =

𝜆2

𝑝1
(1, 0),                

𝑝1 =
𝜆2

(𝛽 − 𝛽1)ℒ
 ,      𝑝2 =

1

ℒ
(𝜆1 −

𝜆2 ∙ 𝛽1

𝛽 − 𝛽1
),                    
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2) 𝛽 > 𝛽1,       𝜗1(𝛽) < 𝜇 < 𝜗2(𝛽). 

Here 

𝜗1(𝛽) =
𝛽1 + 𝑢2

𝛽 − 𝛽1
 ,       𝜗2(𝛽) =

𝛽1 + 𝑢1

𝛽 − 𝛽1
 .                        

Proposition 5.2.5. Let 𝑢1 ≤
𝑝2

𝑝1
≤ 𝑢2, (𝑝1 > 0, 𝑝2 > 0), where 

numbers  𝑢1, 𝑢2, 𝛽1, 𝛽2,  are defined above be satisfied and 

𝑝 = (𝑝1, 𝑝2),   𝛽 =
𝐾

𝐿
,    𝛽1 =

𝑐11

𝑐21
 ,

𝛽2 =
𝑐11

𝑐22
 ,    𝑢1 =

1

𝑣1𝑐21
 ,    𝑢2 =

𝑏

𝑣2𝑐22
 .

 

Then the set if  (𝑝, 𝑥1, 𝑥2) is an equilibrium state in the model 

𝑀 if and only if 

1)     𝑥1 =
𝜆1

𝑝2
(1, 0),      𝑥2 =

𝜆2

𝑝1𝛽2 + 𝑝2
(𝛽2, 1), 

𝑝1 =
𝜆1

(𝛽 − 𝛽2)ℒ
 ,      𝑝2 =

1

ℒ
(𝜆2 −

𝜆1 ∙ 𝛽2

𝛽 − 𝛽2
) ,                       

2)           𝛽 > 𝛽2,      𝜗3(𝛽) < 𝜇 < 𝜗4(𝛽).  

Here 

𝜗3(𝛽) =
𝛽 − 𝛽2

𝛽2 + 𝑢2
 ,       𝜗4(𝛽) =

𝛽 − 𝛽2

𝛽2 + 𝑢1
 .  

Proposition 5.2.6. Let (𝑝1 > 0
𝑝2

𝑝1
< min(𝑢1, 𝑢2) , 𝑝2 > 0), 

where the parameters  𝑢1, 𝑢2, 𝛽, 𝛽1, 𝛽2  are satisfied. Then the set 

(𝑝, 𝑥1, 𝑥2) is an equilibrium state in the model 𝑀 if and only if 

𝑥1 =
𝜆1

𝑝1𝛽1 + 𝑝2
(𝛽1, 1),      𝑥2 =

𝜆2

𝑝1𝛽2 + 𝑝2
(𝛽2, 1), 

𝑝1 =
1

ℒ
(

𝜆1

𝛽 − 𝛽2
−

𝜆2

𝛽1 − 𝛽
) ,      𝑝2 =

1

ℒ
(
𝜆2𝛽1

𝛽1 − 𝛽
−
𝜆1 ∙ 𝛽2

𝛽 − 𝛽2
) ,       

and one of two conditions is met: 

𝜗5(𝛽) < 𝜇 < 𝜗6(𝛽) 𝑏𝑦    𝛽
2 < 𝛽 < 𝛽1,  
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or 

𝜗6(𝛽) < 𝜇 < 𝜗5(𝛽) 𝑏𝑦    𝛽
1 < 𝛽 < 𝛽2,  

where 

𝜗5(𝛽) =
𝛽 − 𝛽2

𝛽1 − 𝛽
∙
𝛽1 +min(𝑢1, 𝑢2)

𝛽2 +min(𝑢1, 𝑢2)
 , 

𝜗6(𝛽) =
𝛽 − 𝛽2

𝛽1 − 𝛽
∙
𝛽1

𝛽2
.   

Proposition 5.2.7. Let 𝑝2 = 0, the parameters 

 𝛽, 𝛽1, 𝛽2, 𝑢1, 𝑢2, have the form as above. Then the set (𝑝, 𝑥1, 𝑥2) is a 

semi-equilibrium state if and only if 

𝑝1 =
1

𝛽ℒ
∙ (𝜆1 + 𝜆2),       𝑝2 = 0, 

𝑥1 = (𝐾1, 𝐿1) ∶     𝐾1 =
𝜆1

𝑝1
,      𝐿1 ≥

𝜆1

𝑝1 ∙ 𝛽1
,                        

𝑥2 = (𝐾2, 𝐿2) ∶     𝐾2 =
𝜆2

𝑝1
,      𝐿2 ≥

𝜆2

𝑝1 ∙ 𝛽2
 , 

and one of the following conditions is met: 

𝜇 > 0     𝑏𝑦    𝛽 < min(𝛽1, 𝛽2) ; 

𝜇 ≥ 𝜗6(𝛽)     𝑏𝑦    𝛽
2 < 𝛽 < 𝛽1;                                

𝜇 ≤ 𝜗6(𝛽)     𝑏𝑦    𝛽
1 < 𝛽 < 𝛽2; 

where 

𝜇 =
𝜆1

𝜆2
,     𝜗6(𝛽) =

𝛽 − 𝛽2

𝛽1 − 𝛽
∙
𝛽1

𝛽2
 . 

Theorem 5.2.3. The model 𝑀 can have half-equilibria only of 

the type  𝐸̃1, 𝐸̃2, 𝐸̃3, 𝐸̃4, 𝐸̃5, and the half-equilibrium 𝐸̃1 is realized if 

and only  

𝛽 < min(𝑢1, 𝑢2) ,     𝜇 > 0, 

or 

𝛽2 < 𝛽 < 𝛽1,      𝜇 ≥
𝛽 − 𝛽2

𝛽1 − 𝛽
∙
𝛽1

𝛽2
, 
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or 

𝛽1 < 𝛽 < 𝛽2,      𝜇 ≤
𝛽2 − 𝛽

𝛽 − 𝛽1
∙
𝛽1

𝛽2
, 

where  𝛽 =
𝒦

ℒ̃
; 

half-equilibrium 𝐸̃2 is realized if and only if 

𝛽 > 𝛽1 ,         
𝛽1 + 𝑢2

𝛽 − 𝛽1
< 𝜇 <

𝛽1 + 𝑢1

𝛽 − 𝛽1
 , 

where  𝛽 =
𝒦

ℒ̃
ℒ̃ ≤ ℒ; 

half-equilibrium 𝐸̃3 is realized if and only if 

𝛽 > 𝛽2 ,         
𝛽 − 𝛽2

𝛽2 + 𝑢2
< 𝜇 <

𝛽 − 𝛽2

𝛽2 + 𝑢1
 , 

where 𝛽 =
𝒦

ℒ̃
ℒ̃ ≤ ℒ; 

half-equilibrium 𝐸̃4 is realized if and only if 

𝛽2 < 𝛽 < 𝛽1, 

𝛽 − 𝛽2

𝛽1 − 𝛽
∙
𝛽1 +min(𝑢1, 𝑢2)

𝛽2 +min(𝑢1, 𝑢2)
< 𝜇 <

𝛽 − 𝛽2

𝛽1 − 𝛽
∙
𝛽1

𝛽2
                

or 

𝛽1 < 𝛽 < 𝛽2, 

𝛽2 − 𝛽

𝛽 − 𝛽1
∙
𝛽1

𝛽2
< 𝜇 <

𝛽2 − 𝛽

𝛽 − 𝛽1
∙
𝛽1 +min(𝑢1, 𝑢2)

𝛽2 +min(𝑢1, 𝑢2)
,               

where 𝛽 =
𝒦

ℒ̃
ℒ̃ ≤ ℒ 

half-equilibrium 𝐸̃5is realized if and only if ,  𝛽 > 0𝜇 > 0 

where 

𝛽 =
𝒦

ℒ̃
. 

Fair 
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Theorem 5.2.4. The model 𝑀 can only have half-equilibria of 

the type  𝐸̃̃1, 𝐸̃̃2, 𝐸̃̃3, 𝐸̃̃4, and  𝐸̃̃1 = (𝑝, 𝑥1, 𝑥2). In this case, half-

equilibrium, where 

𝑥1 =
𝜆1

𝑝1
(1,

1

𝛽1
) ,       𝑥2 =

𝜆2

𝑝1
(1,

1

𝛽2
), 

𝑝1 =
1

𝛽ℒ
∙ (𝜆1 + 𝜆2),       𝑝2 = 0 

is realized if and only if 

𝛽 = 𝛽1 = 𝛽2,      𝜇 > 0, 

where  𝛽 =
𝒦

ℒ
 

half-equilibrium  𝐸̃̃2 = (𝑝, 𝑥1, 𝑥2) where 

𝑥1 =
𝜆1

𝑝1𝛽1 + 𝑝2
(𝛽1, 1),       𝑥2 =

𝜆2

𝑝1
(1, 0), 

𝑝1 =
𝜆2𝛽

𝒦̃ (𝛽 − 𝛽1)
 ,       𝑝2 =

𝛽

𝒦̃
(𝜆1 −

𝜆2𝛽1

𝛽 − 𝛽1
) 

is realized if and only if 

𝛽 > 𝛽1 ,       
𝛽1 + 𝑢2

𝛽 − 𝛽1
≤ 𝜇 ≤

𝛽1 + 𝑢1

𝛽 − 𝛽1
, 

where  𝛽 =
𝒦̃

ℒ
𝒦̃ ≤ 𝒦; 

half-equilibrium 𝐸̃̃3 = (𝑝, 𝑥1, 𝑥2), where 

𝑥1 =
𝜆1

𝑝1
(1, 0),       𝑥2 =

𝜆2

𝑝1𝛽2 + 𝑝2
(𝛽2, 1), 

𝑝1 =
𝜆1𝛽

𝒦̃ (𝛽 − 𝛽2)
 ,       𝑝2 =

𝛽

𝒦̃
(𝜆2 −

𝜆1𝛽2

𝛽 − 𝛽2
) 

is realized if and only if 

𝛽 > 𝛽2 ,         
𝛽 − 𝛽2

𝛽2 + 𝑢2
≤ 𝜇 ≤

𝛽 − 𝛽2

𝛽2 + 𝑢1
 , 
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where 𝛽 =
𝒦̃

ℒ
𝒦̃ ≤ 𝒦; 

half-equilibrium  𝐸̃̃4 = (𝑝, 𝑥1, 𝑥2) where 

𝑥1 =
𝜆1

𝑝1𝛽1 + 𝑝2
(𝛽1, 1),      𝑥2 =

𝜆2

𝑝1𝛽2 + 𝑝2
(𝛽2, 1), 

𝑝1 =
𝛽

𝒦̃
(

𝜆1

𝛽 − 𝛽2
−

𝜆2

𝛽1 − 𝛽
) ,       𝑝2 =

𝛽

𝒦̃
(
𝜆2𝛽1

𝛽1 − 𝛽
−

𝜆1𝛽2

𝛽 − 𝛽2
) 

is realized if and only if 

𝛽2 < 𝛽 < 𝛽1, 

𝛽 − 𝛽2

𝛽1 − 𝛽
∙
𝛽1 +min(𝑢1, 𝑢2)

𝛽2 +min(𝑢1, 𝑢2)
≤ 𝜇 ≤

𝛽 − 𝛽2

𝛽1 − 𝛽
∙
𝛽1

𝛽2
 .               

If 

𝛽1 < 𝛽 < 𝛽2, 

𝛽2 − 𝛽

𝛽 − 𝛽1
∙
𝛽1

𝛽2
≤ 𝜇 ≤

𝛽 − 𝛽2

𝛽1 − 𝛽
∙
𝛽1 +min(𝑢1, 𝑢2)

𝛽2 +min(𝑢1, 𝑢2)
 ,               

where  𝛽 =
𝒦̃

ℒ
𝒦̃ ≤ 𝒦. 

Effective trajectories of the model 𝑍2 are discussed in the third 

paragraph of Chapter V. 

Let's consider a trajectory (𝑥𝑡)𝑡=0
∞  whose vectors 𝑥𝑡 =

(𝐾𝑡
1, 𝐿𝑡

1, 𝐾𝑡
2, 𝐿𝑡

2)(𝐾𝑡
𝑖 > 0, 𝐿𝑡

𝑖 > 0,   𝑖 = 1,2) are strictly positive. 

Recall that a trajectory (𝑥𝑡)𝑡=0
∞  is optimal (effective) if it admits the 

characteristic (ℓ̃𝑡) . 

Let the trajectory (𝑥𝑡)𝑡=0
∞  admit the characteristic (ℓ̃𝑡). Then 

there are numbers 𝑏𝑡
1 ≥ 0, 𝑏𝑡

2 ≥ 0 such that 

ℓ̃𝑡 = (𝑏𝑡
1,   𝑏𝑡

2,   𝑏𝑡
1,   𝑏𝑡

2),                               

Let, ℓ𝑡
∆ = (𝑏𝑡

1, 𝑏𝑡
2), ℓ̃𝑡 = (ℓ𝑡

∆, ℓ𝑡
∆), i.e. product prices do not 

depend on the division where they are considered. Let us assume that 

 𝑏𝑡
1 > 0 for all 𝑡 and write the vector ℓ𝑡

∆ in the form 

ℓ𝑡
∆ = 𝑏𝑡

1ℓ𝑡, 
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 ℓ𝑡 = (1,   𝑏𝑡𝜔𝑡).                                    (37) 
Let's put 

𝑈𝑡
1(ℓ𝑡+1,   𝑥) = 𝑣𝑡

1𝐾 +min (
𝐾

𝑐𝑡
11 ,

𝐿

𝑐𝑡
21) ,

𝑈𝑡
2(ℓ𝑡+1,   𝑥) = 𝑣𝑡

2𝐾 + 𝑏𝑡+1min (
𝐾

𝑐𝑡
12 ,

𝐿

𝑐𝑡
22) ,

 

where 𝑐𝑡
𝑖𝑗
> 0 (𝑖, 𝑗 = 1, 2;    𝑡 = 0, 1, 2, … ) are the given numbers. 

Theorem 5.3.1. Let be the trajectory (𝑥𝑡)𝑡=0
∞  of the model 

𝑍2 admitting the characteristic (ℓ̃𝑡). Let us assume that,  𝐾𝑡
𝑖 >

0, 𝐿𝑡
𝑖 > 0(𝑖 = 1, 2) and the numbers 𝑏 𝑡 are defined by equality (34). 

Then 

𝑏𝑡+1 = 𝑉𝑡(𝑏𝑡). 
Lemma 5.3.2. If for everyone 𝑡 = 0, 1, 2, … 

𝑣𝑡
2 − 𝑣𝑡

1 <
1

𝑐𝑡
11 ,  

𝛽𝑡
1 > 𝛽𝑡

2 ,  
                                               𝑑𝑡

2 ≤ 𝑐2 = 𝑐𝑜𝑛𝑠𝑡 ,                                        
Theorem 5.3.2. Let assumptions (37) and the conditions of 

Lemma 5.3.2 be satisfied. Then the sequence{𝑏𝑡} converges to  

𝑏 ̅where 𝑏̅ is defined in Lemma 5.2.1. 

The following paragraphs discuss the same type of 

reproduction model as in previous chapters, but with arbitrary 

production functions. It is shown that in the two-sector model there 

are prices different from the Neumann ones at which a balanced 

growth of divisions is possible. A description of the Neumann face in 

the case of non-degeneracy is also given. 

The fourth paragraph of Chapter V provides a description of 

the two-sector model of economic dynamics. The first sector 

produces means of production, the second sector produces consumer 

goods. 

The two-sector model 𝑍 is specified using the production 

mapping 𝑎(𝑥): 

𝑎(𝐾1, 𝐿1, 𝐾2, 𝐿2) = {(𝐾1
′ , 𝐿1

′ , 𝐾2
′ , 𝐿2

′ )|𝐾1
′ ≤ 𝑣1𝐾1 + 𝐹1(𝐾1, 𝐿1)𝑢1, 
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𝐾2
′ ≤ 𝑣2𝐾2 + 𝐹1(𝐾1, 𝐿1)𝑢2,   𝑢1 + 𝑢2 ≤ 1,    𝐿1

′ ≤ 𝐹2(𝐾2, 𝐿2)𝜐1, 

𝐿2
′ ≤ 𝐹2(𝐾2, 𝐿2)𝜐2,      𝜔1𝜐1 +𝜔2𝜐2 ≤ 1}.                          

It is assumed that the production function is given on a cone 𝑅+
2  

and is non-negative and superlinear there. Besides,  𝐹𝑖(𝐾, 0) =

𝐹𝑖(0, 𝐿) = 0. Under these assumptions, the mapping 𝑎(𝑥)is 

superlinear and, therefore, 𝑍 a Neumann-Gale model. 

Let us introduce the notation 

𝑓𝑖(𝜂) = 𝐹𝑖(𝜂, 1),     (𝑖 = 1, 2),    𝜂 =
𝐾

𝐿
, 

𝑝 = (𝑝11,   𝑝12𝜔1,   𝑝
21,   𝑝22𝜔2), 

where 𝑝1𝑖(𝑖 = 1, 2) is the price of a unit of funds in the first and 

second sectors  has the same meaning 𝑝𝑖2(𝑖 = 1, 2) 
When studying a two-sector model 𝑍, we will need single-

product models 𝑍1 and 𝑍2, which are specified by production 

mappings 𝑎1(𝑥) and 𝑎2, accordingly, defined on the con𝑒 𝑅+
2  using 

the formulas: 

𝑎1(𝐾1, 𝐿1) = {(𝐾1
′ , 𝐿1

′ )|0 ≤ 𝐾1
′ ≤ 𝑣1𝐾1

 + 𝑢1,   𝑢1 ≥ 0,    

𝑢1 + 𝜔̃1𝐿1
′ ≤ 𝐹̃1(𝐾1, 𝐿1), 𝜔̃1 =

𝑝12

𝑝11
𝜔1, 

   𝐹̃1(𝐾1, 𝐿1) = max(1,
𝑝21

𝑝11
)𝐹1(𝐾1, 𝐿1)} ;         

       𝑎2(𝐾2, 𝐿2) = {(𝐾2
′ , 𝐿2

′ )|0 ≤ 𝐾2
′ ≤ 𝑣2𝐾2 + 𝑢2,   𝑢2

≥ 0,   𝑢2 +𝜔̃2𝐿2
′ ≤ 𝐹̃2(𝐾2, 𝐿2), 

𝜔̃2 =
𝑝22

𝑝21
𝜔2,   𝐹̃2(𝐾2, 𝐿2) = max (

𝑝12

𝑝21
,
𝑝22

𝑝21
)𝐹2(𝐾2, 𝐿2)} . 

Let us consider the models 𝑍𝑖(𝑖 = 1, 2), for 𝜔̃𝑖𝑣𝑖 ≤ 𝓈̃𝑖, 

where 𝓈̃𝑖 = lim
𝜂→+∞

𝑓𝑖(𝜂) , 𝑓𝑖(𝜂) = 𝐹̃𝑖(𝜂, 1). It is easy to verify that the 

Neumann growth rates 𝛼𝑖of these models are calculated by the 

formula 
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𝛼𝑖 = max
𝐾,𝐿>0

𝑣𝑖𝐾 + 𝐹̃𝑖(𝐾, 𝐿)

𝐾 + 𝜔̃𝑖𝐿
= max

𝜂>0

𝑣𝑖𝜂 + 𝑓𝑖(𝜂)

𝜂 + 𝜔̃𝑖
(𝑖 = 1, 2),   (38) 

Lemma 5.4.1. Let vector 𝑝 = (𝑝11,   𝑝12𝜔1,   𝑝
21,   𝑝22𝜔2) the 

price vector 𝑎(𝑥) be the production display of the model 𝑍. Then the 

relation is true for the 𝑥 = (𝐾1, 𝐿1, 𝐾2, 𝐿2): 
max
 
[𝑝, 𝑦] = 𝑝11𝑣1𝐾1 + 𝑝

21𝑣2𝐾2 +max
 
(𝑝11, 𝑝21) 𝐹1(𝐾1, 𝐿1) + 

+max
 
(𝑝12, 𝑝22) 𝐹2(𝐾2, 𝐿2) 

Proposition 5.4.1. Equality is fair 

𝛼 = max(𝛼1, 𝛼2) 
where 𝛼, 𝛼1,𝛼2  are the Neumann growth rates of the models 

𝑍, 𝑍1,, 𝑍2, , respectivel . 

Theorem 5.4.1. Let.𝑥̅ = (𝐾̅1, 𝐿̅1, 𝐾̅2, 𝐿̅2) be the equilibrium 

vector, 𝑝 = (𝑝11, 𝑝12𝜔1, 𝑝
21, 𝑝22𝜔2) , (𝑝

11 > 0,   𝑝21 > 0) be the 

equilibrium prices, number 𝛼 > 0 be the Neumann growth rate 𝐾̅𝑖 +
𝜔𝑖𝐿̅𝑖 = 1(𝑖 = 1, 2), 𝜔𝑖𝑣𝑖 ≤ 𝓈𝑖, 𝓈𝑖 = lim

𝜂→+∞
𝑓𝑖(𝜂𝑖) 

Then 

1) if  𝛼1 > 𝛼2, 𝑝
22 > 0, then the equilibrium vector of the 

model 𝑍 has the form 𝑥̅ = (1, 0, 0, 0), and the vector 𝑥̅1 = (1, 0) is 

the equilibrium vector in the single-product model 𝑍1. 
2) if 𝛼2 > 𝛼1, 𝑝

12 > 0, then 𝑥̅ = (0, 0, 1, 0), and 𝑥̅2 = (1, 0) 
is the equilibrium vector in the model 𝑍2. 

3) if 𝛼 = 𝛼1 = 𝛼2, then the Neumann equilibrium vector𝑥̅ =
(𝐾̅1, 𝐿̅1, 𝐾̅2, 𝐿̅2) is determined by the relations 

𝐾̅𝑖

𝐿̅𝑖
= 𝜂̅𝑖 ,    

𝐿̅1

𝐿̅2
=
(𝛼 − 𝑣2)𝜂̅2

𝛼𝜔1
,                       

where 𝜂̅𝑖 is the point at which the maximum in (35) is achieved. 

In this case, there  are Neumann prices of the form 𝑝 =
(1, 𝑏𝜔1, 1, 𝑏𝜔2), where 𝑏 is the solution to the equation 𝛼1(𝑏) =
𝛼2(𝑏). 

In the fifth section of Chapter V, non-degenerate Neumann 

equilibrium is studied. Neumann equilibrium is characterized by the 

fact that 𝛼1(𝑝) = 𝛼2(𝑝) where 
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𝛼1(𝑝) = 𝑔(𝑏1, 𝑐) , 
𝛼2(𝑝) = ℎ(𝑏2, 𝑑), 

where  𝑏1, 𝑏2, 𝑐, 𝑑, are defined in the first paragraph of Chapter V. 

It would be interesting to consider such prices 

𝑝 = (𝑝11,   𝑝12𝜔1,   𝑝
21,   𝑝22𝜔2)(𝑝

11 > 0,   𝑝21 > 0) 
not necessarily Neumann ones, which 𝛼1(𝑝) = 𝛼2(𝑝). Let us find 

out at what prices 𝑝 the equality 𝛼1(𝑝) = 𝛼2(𝑝) is valid. Let's 

introduce new variables 

𝑞1 =
𝑝12

𝑝11
 ,      𝑞2 =

𝑝22

𝑝21
 ,      𝑞3 =

𝑝12

𝑝21
. 

Let's look at the functions 

𝛽1(𝑞) = 𝑔(𝑏1, 𝑐),     где    𝑏1 = 𝑞1,    𝑐 = max (1,
𝑞1
𝑞3
) ;  

𝛽2(𝑞) = ℎ(𝑏2, 𝑑),     где    𝑏2 = 𝑞2,    𝑑 = max(𝑞3, 𝑞2).  
Let's put: 

𝑐 = ℎ(𝑞3), 
where  ℎ(𝑞3) = ℎ(𝑞2, 𝑞3). 

Theorem 5.5.1. Let 𝜔𝑖𝑣𝑖 < 𝓈𝑖(𝑖 = 1, 2) 
1) The set of points (𝑞1, 𝑞3) represents the set of solutions to 

the inequality 

𝛽1(𝑞1, 𝑞3) ≥ 𝑐.  
2) If (𝑞1, 𝑞3) satisfies the strict inequality 

𝛽1(𝑞1, 𝑞3) > 𝑐,  
then 𝑞2 there are two values at which the conditions are met 

𝛽1(𝑞1, 𝑞3) = 𝛽2(𝑞2, 𝑞3) 
3) If (𝑞1, 𝑞3) they satisfy the equality 

𝛽1(𝑞1, 𝑞3) = 𝑐, 
then 𝑞1 = 𝑞3 there is only one solution – Neumann prices. 

Comment. For each 𝑞3  equation𝑞3   

𝛽2(𝑞2, 𝑞3) = 𝛽1(𝑞1, 𝑞3)                                       

it makes sense to consider for𝑞1 such that  𝛽1(𝑞1, 𝑞3) = 𝑎 ≥ 𝑑(𝑞3) . 

Since inf 𝑑(𝑞3) = 𝑣1 < 𝑐, then 𝑞1,𝑞3 there are such, that 

𝛽1(𝑞1, 𝑞3) < 𝑐. For these (𝑞1, 𝑞3), there is no such thing 

for  𝑞2  which the equation has a solution. 
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If  𝛽1(𝑞1, 𝑞3) = 𝑎 = 𝑐, then 𝑞2 there is a unique solution to the 

equation. In this case, 𝑝 = (𝑝11, 𝑝12𝜔1, 𝑝
21, 𝑝22𝜔2) are the 

Neumann prices, where 𝑞1 =
𝑝12

𝑝11
 , 𝑞2 =

𝑝22

𝑝21
, 𝑞3 =

𝑝12

𝑝21
  and for 

𝛽1(𝑞1, 𝑞3) = 𝑎 > 𝑐, then 𝑞2  𝑡here are two solutions to the equation 

Based on the above, we find that there is no such function that would 

express one of the vector 𝑞 = (𝑞1, 𝑞2, 𝑞3) coordinates in terms of the 

other two, since it has two values. 

The sixth paragraph of the fifth Chapter is devoted to Neumann 

faces, i.e. we will be interested only in the non-degenerate case, 

namely 𝛼1 = 𝛼2 

As is known, many 

𝑁𝛼 = 𝐾⋂𝐻𝑝, 

where 𝐻𝑝 = {(𝑥, 𝑦)|[𝑝, 𝑦] = 𝛼[𝑝, 𝑥]}, p are Neumann prices, is 

called the Neumann edge of a given equilibrium state, where 𝐾 is the 

cone of the model 𝑍. Let's construct a Neumann face  𝑁𝛼 for the 

model 𝑍. Let, 𝑥 = (𝐾1, 𝐿1, 𝐾2, 𝐿2)𝑝 = (𝑝11, 𝑝12𝜔1, 𝑝
21, 𝑝22𝜔2) =

(1, 𝑏𝜔1, 1, 𝑏𝜔2) be Neumann prices.  

A-priory 

𝑁𝛼 = {(𝑥, 𝑦) ∈ 𝑍 |[𝑝, 𝑦] = 𝛼[𝑝, 𝑥]}. 
Theorem 5.6.1. Let 𝛼 = 𝛼1 = 𝛼2, 𝑝 = (1, 𝑏𝜔1, 1, 𝑏𝜔2), be 

Neumann prices. Then the Neumann edge has the following form: 

𝑁𝛼 = 

= {(𝑥, 𝑦)|𝑥 = (𝜆(𝐾̅1, 𝐿̅1),   𝜇(𝐾̅2, 𝐿̅2)), ∀  𝑦 ∈ 𝑎̃(𝑥), 𝜆 ≥ 0,   𝜇 ≥ 0}. 
The sixth Chapter examines models of the economic dynamics 

of production and exchange of the Neumann type, defined on a 

graph. The model is defined by a digraph, each vertex of which is 

associated with some superlinear multivalued mapping that describes 

the technological capabilities of some economic unit. The existence 

of an arc from vertex to vertex means the possibility of transporting 

products from one vertex to another. A dual model is calculated and 

with its help the characteristics of optimal trajectories are found. 
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The first paragraph explores a model of economic dynamics 

that describes the time behavior of an economic system 𝑆 consisting 

of a finite number of production units 𝑠𝑖, 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ . The case is 

considered when transport costs are not taken into account. Each 

production unit is specified by a Neumann-Gale model defined by a 

superlinear set-valued mapping 𝑎𝑖: 𝑅+
𝑛 → 𝜋(𝑅+

𝑛). Therefore, it is 

assumed that the phase space is the same for all models. Exchange of 

products is allowed between some of these  production units. To 

formally describe the model, we introduce the graph 𝑃(𝐽, 𝑄), 

where 𝑃(𝐽, 𝑄) is a loop-free graph, 𝐽 is a set of vertices, and 𝑄 is a 

multivalued mapping 𝐽 in 𝐽. More precisely, 𝑄(𝑗) this is a set of 

vertices 𝑘 ∈ 𝐽 such that there is an arc from vertex 𝑗 to vertex 𝑘 and 

𝑄−1(𝑗) a set to vertex 𝑘 ∈ 𝐽. By an arc from vertex 𝑗 to vertex 𝑘we 

mean an ordered. The presence of an arc means the possibility of 

transportation from. The model deals with the same products as 

models, but it is more convenient to distinguish between products 

corresponding to different vertices of the graph. 

 In this regard, we will assume that the phase space of the 

model coincides with the cone (𝑅+
𝑛)𝑚. If  𝑋 = (𝑥1, … , 𝑥𝑚) ∈ (𝑅+

𝑛)𝑚, 

then the element  𝑥𝑖 ∈ 𝑅+ 
𝑛  is interpreted as a set of products available 

at the production site 𝑖. The mappings   𝐴 and   𝐵, describing 

production and exchange respectively, are defined as follows:  

𝐴(𝑋) = {𝑌|𝑌 = (𝑦1, … , 𝑦𝑚), 𝑦𝑖 ∈ 𝑎𝑖(𝑥𝑖), 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ }, 

𝐵(𝑌) = {𝑍|𝑍 = (𝑧1, … , 𝑧𝑚), 𝑧𝑖 = 𝑦𝑖 + ∑ 𝑢𝑗𝑖
𝑗∈𝑄(𝑖)

− ∑ 𝑢𝑖𝑘
𝑘∈𝑄−1(𝑖)

, 

𝑢𝑖𝑗 ≥ 0, ∑ 𝑢𝑖𝑘
𝑘∈𝑄−1(𝑖)

≤ 𝑦𝑖}. 
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Vector  𝑢𝑗𝑖  describes products transported in an arc (𝑗, 𝑖). It is 

easy to verify that the mappings    𝐴 and  𝐵 are superlinear. 

If  𝑀 ∈ 𝑅+
𝑛 ⨯ 𝑅+

𝑛  the Neumann-Gale model, then the dual 

model 𝑀′ is defined as follows 

𝑀′ = {(𝑓, 𝑔) ∈ (𝑅+
𝑛)∗ ⨯ (𝑅+

𝑛)∗|[𝑓, 𝑥] ≥ [𝑔, 𝑦]   for all (𝑥, 𝑦) ∈ 𝑀}. 

Let us give a description of the model dual to 𝑆. For this 

purpose, we describe the mappings 𝐴′  and 𝐵′ dual to 𝐴 and 𝐵, 

respectively. In what follows we will denote the cone  (𝑅+
𝑛)𝑚 by 𝐾. 

Then  𝐾∗ = ((𝑅+
𝑛)𝑚)∗. We denote the elements of the cones 

𝐾  and 𝐾∗ by capital letters, and the projections of these elements 

onto the  𝑖- th factor by the corresponding lowercase letters with an 

index  𝑖. Thus, if ∈ 𝐾 then  𝑋 = (𝑥1, … , 𝑥𝑚). We will denote 

[𝐹, 𝑋] the value of the functionality 𝐹 ∈ 𝐾∗ on the element  𝑋 ∈ 𝐾. In 

other words 

[𝐹, 𝑋] =∑[𝑓𝑖, 𝑥𝑖]

𝑖

. 

Proposition 6.1.1. Equality is fair 

𝐴′(𝐹) = {𝐺 ∈ 𝐾∗|𝑔𝑖 ∈ 𝑎𝑖
′(𝑓𝑖), 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ }, 𝐹 ∈ 𝐾

∗ 

Lemma 6.1.1. If 𝐻 ∈ 𝐾∗, 𝑍 ∈ 𝐵(𝑌), where 

𝑧𝑖 = 𝑦𝑖 + ∑ 𝑢𝑗𝑖
𝑗∈𝑄(𝑖)

− ∑ 𝑢𝑖𝑘
𝑘∈𝑄−1(𝑖)

, 

[𝐻, 𝑍] =∑[ℎ𝑖 , 𝑦𝑖]

𝑖

+∑ ∑ [ℎ𝑘 − ℎ𝑖, 𝑢𝑖𝑘]

𝑘∈𝑄−1(𝑖)

𝑚

𝑖=1

.  

Proposition 6.1.3. Let  𝐻 ∈ 𝐵′(𝐺), 𝑍̅ ∈ 𝐵(𝑌̅) it be, and 

𝑧𝑖̅ = 𝑦̅𝑖 + ∑ 𝑢̅𝑗𝑖
𝑗∈𝑄(𝑖)

− ∑ 𝑢̅𝑖𝑘
𝑘∈𝑄−1(𝑖)

, 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ . 

Equality  [𝐻, 𝑍̅] = [𝐺, 𝑌̅ ]  occurs if and only if  
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[𝑔𝑖 − ℎ𝑖 , 𝑦̅𝑖 − ∑ 𝑢̅𝑖𝑘
𝑘∈𝑄−1(𝑖)

] = 0, [𝑔𝑖 − ℎ𝑘, 𝑢̅𝑖𝑘] = 0, (𝑖, 𝑘) ∈  𝑄. 

Let us formulate the results obtained in the form of a theorem. 

Theorem 6.1.1. In order for the price trajectory to be a 

characteristic of the trajectory, it is necessary and sufficient for the 

following conditions to be met: 

𝑔𝑖(𝑡) ∈ 𝑎𝑖
′(𝑓𝑖(𝑡 − 1)), 

[𝑓𝑖(𝑡 − 1), 𝑥𝑖(𝑡 − 1)] = [𝑔𝑖(𝑡), 𝑦𝑖(𝑡)], 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ , 

 𝑔𝑙(𝑡)𝑓𝑗(𝑡), 𝑗 ∈ 𝑄
−1(𝑙) ∪ {𝑙}[𝑓𝑖(𝑡) − 𝑔𝑖(𝑡), 𝑦̅𝑖(𝑡) −

∑ 𝑢̅𝑖𝑘(𝑡)𝑘∈𝑄(𝑖) ] = 0, 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ , 

[𝑓𝑖(𝑡) − 𝑔𝑘(𝑡), 𝑢̅𝑖𝑘(𝑡)] = 0, (𝑖, 𝑘) ∈ 𝑄, 𝑡 = 1, 𝑇̅̅ ̅̅ ̅. 

Theorem 6.1.2. Let the triple (𝛼, 𝑋̅, 𝐹) be the equilibrium state 

of the model    𝑆, and let the elements   𝑢̅𝑗𝑖   and 𝑔𝑙, and functionals 𝑔𝑙 

be determined by relations  

𝑦̅𝑖(𝑥) ∈ 𝑎𝑖(𝑥̅𝑖), ∑ 𝑢𝑖𝑘
𝑘∈𝑄−1(𝑖)

≤ 𝑦̅𝑖, 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅  

and  

𝑔𝑙(𝑡) ∈ 𝑎𝑙
′(𝑓𝑙),   𝑙 = 1,𝑚̅̅ ̅̅ ̅̅ ,   

1

𝛼
𝑓𝑗 ≤ 𝑔𝑙,   𝑗 ∈ 𝑄

−1(𝑙) ∪ {𝑙}, 

 

respectively. Then  

[𝑔𝑖 −
1

𝛼
𝑓𝑖, 𝑥̅𝑖] = 0, 𝑖 = 1,𝑚,̅̅ ̅̅ ̅̅  

[𝑔𝑖 −
1

𝛼
𝑓𝑖 , 𝑢̅𝑗𝑖] = 0, 𝑗 ∈ 𝑄(𝑖), 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ , 

[𝑓𝑖, 𝑢̅𝑗𝑖] = [𝑓𝑗, 𝑢̅𝑗𝑖], 𝑗 ∈ 𝑄(𝑖), 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ . 

The following statements are true. 
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Proposition 6.1.4. Let  𝑄 = (𝑔1, 𝑔2… . 𝑔𝑚) ∈ (𝑅+
𝑛)𝑚 

Then 𝐴∗(𝑄) =. 

Let us introduce the following notation. Let  𝐻 =

(ℎ1, … . ℎ𝑚) ∈ (𝑅+
𝑛)𝑚. Let's put 

                                𝑞𝑖(𝐻) = 𝑆𝑢𝑝𝑖∈𝐺(𝑗)((𝑐
𝑗𝑖)𝑇∗ℎ𝑖).  

Here the supremum of vectors  (𝑐𝑗𝑖)∗ℎ is calculated 

coordinatewise (*-sign of matrix transposition). Let further  

                              𝐾(𝐻) = (𝑞1(𝐻),… . 𝑞𝑚(𝐻)). 

In the second paragraph of the sixth Chapter models of 

reproduction and exchange on the graph are considered, taking into 

account transport costs. The effective trajectories of such models are 

studied. In this case, the simplest equilibrium mechanisms are used. 

 In we take into account the mapping В that describes the 

exchange relation in the simulated system: 

В(𝑌) = {𝑍 = (𝑍1, … , 𝑍𝑚)|𝑍𝑘 = ∑ 𝐶𝑗𝑘𝑢𝑗𝑘

𝑗∈Г−1(𝑘)

, 

𝑘 = 1,2, … ,𝑚;  𝑢𝑖𝑗 ≥ 0 in front of everyone (𝑖, 𝑗) ∈ Г, 

∑ 𝑢𝑖𝑗

𝑗∈Г(𝑖)

= 𝑦𝑖, 𝑖 = 1,2, … ,𝑚}. 

Production capabilities of the entire system are given by the 

mapping 𝐴 defined on the cone (𝑅+
𝑛)𝑚. If 𝑥 = (𝑥1, … , 𝑥𝑚) ∈ (𝑅+

𝑛)𝑚, 

then 

𝐴(𝑥) = 𝑎1(𝑥1) ⨯ 𝑎2(𝑥2) ⨯ …⨯ 𝑎𝑚(𝑥𝑚), 

in other words 

𝐴(𝑥) = {𝑦 = (𝑦1, … , 𝑦1)|𝑦𝑖 ∈ 𝑎𝑖(𝑥𝑖), 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ } 

 The functioning of the entire system comes down to 

production and exchange. If production activity is considered first, 
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and then exchange, then the functioning of the system is described by 

composition  𝑎 = 𝐵  ⃘𝐴 

𝑎(𝑥) = ⋃ 𝐵(𝑦)

𝑦∈𝐴(𝑥)

,   𝑥 ∈ (𝑅+
𝑛)𝑚. 

 If exchange occurs first, and then production, then 

composition  𝑏 = 𝐴  ⃘𝐵  is considered 

𝑏(𝑦) = ⋃ 𝐴(𝑧)

𝑧∈𝐵(𝑦)

,   𝑦 ∈ (𝑅+
𝑛)𝑚 

Under natural assumptions, an optimal trajectory in the sense 𝐹 

of admitting the characteristic, then there exists such a sequence 

𝐹0, 𝐹1, … , 𝐹𝑇 , what 𝐹𝑇 = 𝐹, 

[𝐹, 𝑋0] = ⋯ = [𝐹𝑇 , 𝑋𝑇], [𝐹, 𝑋̃0] ≥ ⋯ ≥ [𝐹𝑇 , 𝑋̃𝑇] 

for any 𝑇-steppertrajectories 𝑋̃0, … , 𝑋̃𝑇 where 𝐹 satisfy the condition. 

The following statements are true. 

Proposition 6.2.2. Let   𝐻 = (ℎ1, … . ℎ𝑚) ∈ (𝑅+
𝑛)𝑚 it be 

then 𝐵∗(𝐻) = 𝐾(𝐻) + (𝑅+
𝑛)𝑚, in other words, 𝐵∗(𝐻) =

{𝑄 = (𝑔1, … . 𝑔𝑚)|𝑔𝑘 ≥ 𝑞𝑘(𝐻), 𝑘 = 1,𝑚̅̅ ̅̅ ̅̅ },  

[𝐹, 𝑋𝑇] = max
 
[𝐹, 𝑋̃𝑇]. 

Proposition 6.2.3. Let  𝑍̅ ∈ 𝐵(𝑌̅)  where, 𝑍̅ =

(𝑧̅1, 𝑧̅2, … , 𝑧̅𝑚), 𝑌̅ = (𝑦̅1, 𝑦̅2, … , 𝑦̅𝑚) and the elements 𝑢̅𝑗𝑖(𝑖, 𝑗 ∈

𝐺) are such that 

𝑦̄𝑗 = ∑ 𝑢̄

𝑖∈𝐺(𝑗)

𝑗𝑖

, 𝑧̄𝑖 = ∑ 𝐶𝑗𝑖𝑢̄𝑗𝑖 .

𝑗∈𝐺−1(𝑘)

 

Let further, if 𝑄 ∈ 𝐵∗(𝐻), where 𝑄 = (𝑔1, 𝑔2, … , 𝑔𝑚), 𝐻 =

(ℎ1, ℎ2, … , ℎ𝑚). Then the equality [𝐻̅, 𝑍̅]= [𝑄, 𝑌̅] is valid if and 

only if 

               [𝑞𝑖 − (𝐶𝑗𝑖)∗ℎ𝑖, 𝑢̅𝑗𝑖] = 0𝑞𝑖 − (𝐶𝑗𝑖)∗ℎ𝑖, 𝑢̅𝑗𝑖   

for all (𝑗, 𝑖)  ∈ 𝐺. 
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Theorem 6.2.1. The sequence 𝐹0, 𝐹1, … , 𝐹𝑇, where 𝐹𝑡 =

(𝑓𝑡
1, … , 𝑓𝑡

𝑚) is a characteristic of the trajectory 𝑋0, 𝑋1, … , 𝑋𝑇 if and 

only if 

1. 𝑓𝑡−1
1 ∈ (𝑎𝑡

𝑖)
∗
(𝑞(𝐹𝑡)), 𝑡 = 1,2, … , 𝑇;     𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ ; 

2. [𝑞𝑖(𝐹𝑡) − (𝑐
𝑖𝑗)

∗
𝑓𝑖
𝑗
, 𝑢𝑡

𝑗𝑖
] = 0,   (∀(𝑗, 𝑖) ∈ Г). 

Definition. The equilibrium state of the model (U, X) is the 

set (Z, H), where 𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑚), 𝐻 = (ℎ1, ℎ2, … , ℎ𝑚) that 

here 𝑧𝑖the vector of resources, ℎ𝑖is  the vector of prices, and 𝑧𝑖 is 

a solution to the problem  
𝑢𝑖(𝑍)

[ℎ𝑖,𝑍]
→ 𝑚𝑎𝑥 under the condition Z≥0 

and there 𝑢𝑗𝑖(𝑗, 𝑖 ∈ G are vectors  with the property that 

∑ 𝑢𝑗𝑖

𝑗∈𝐺(𝑖)

= 𝑥𝑗 , ∑ 𝐶𝑗𝑖𝑢𝑗𝑖 =

𝑚

𝑗∈𝐺−1(𝑖)

𝑧𝑖 . 

In this case, the vector 𝐻 = (ℎ1, ℎ2, … , ℎ𝑚) is related to 

vectors 𝑢𝑗𝑖 by relations of the type [𝑞𝑗(𝐻) − (𝐶𝑗𝑖)
∗
ℎ, 𝑢𝑗𝑖] = 0, 

where  𝑞𝑗(𝐻) is the vector defined by formula (4). 

Let there be a graph (J, G) equipped with a matrix system 

𝐶𝑗𝑖(𝑗, 𝑖 ∈ G), and each𝑖 is associated with a vector of resources х𝑖and 

a utility function  𝑈𝑖. Using the characteristic theorem, it is possible, 

under certain assumptions, to prove the existence in the model (U, X) 

of an equilibrium (Z, 𝐻), which has the additional property that the 

value of the problem 𝑚𝑎𝑥
𝑈𝑖(𝑍)

[h𝑖,𝑍]
  coincides with either zero or one for 

all 𝑖. 
Let us assume that the vectors  х𝑖 are strictly positive and 

consider a one-step trajectory of the model Z; starting from point 

X and maximizing the price vector 𝑄 on the set b(X); here, as 

above, b = A  ⃘B, the mapping B is defined using the graph (J, G) 

and matrices according to formula (1), and the mapping A is 

defined using the mapping  𝑎𝑖 according to formula (2). Let the 
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indicated trajectory have the form (X, 𝑌). Then there is a vector Z 

with the property that 𝑍 ∈ В(X), 𝑌 ∈ А(Z). 

According to well-known theorems, there𝐹 is a price vector 

such that the pair (𝐹, 𝑄) is a characteristic of the trajectory (X, 𝑌). 

There Н is a vector such that 

               𝐹 ∈ 𝐵∗(𝐻),𝐻 ∈ 𝐴∗(𝑄) and [𝐹, Х] = [𝐻, Z] =

[𝑄, У]. 

It is clear that the pair [Z, 𝐻] is an equilibrium. 
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MAIN RESULTS 

 

 

- Characteristic prices have been found for some Neumann-

type models. 

- For some trajectories with certain properties, a theorem on the 

growth rate is proven and a description of effective trajectories is 

given. 

- The principle of optimality for maximizing consumption is 

proposed and two ways of distributing labor are proposed. 

- For trajectories with strict equilibria, a theorem on 

asymptotics has been proven. 

- The conditions for introducing new technologies have been 

determined. 

-For the Cobb-Douglas and CES production functions, the 

dependence of the consumption function on the type of production 

functions is determined. 

- The dependence of the consumption function on the means of 

production is determined. 

-The conditions for maximizing some macro-indicators were 

found. 

- Trajectories were studied at a constant accumulation rate. 

- A necessary and sufficient maximum condition for the utility 

function is proved and superdifferentials are found. 

- A necessary and sufficient condition for the existence of a 

solution to the consumer problem has been proven. 

- A necessary and sufficient condition for the existence of a 

solution to the consumer problem in equilibrium without losses has 

been proven. 

- A necessary and sufficient condition for the existence of 

equilibrium prices without losses has been proven. 

- The connection between the Neumann equilibrium condition 

and lossless equilibrium is determined. 

- Conditions have been determined under which constructing 

an effective trajectory from the starting point is impossible. 
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- For the two-sector model, using the equilibrium mechanism, 

the Neumann growth rate, equilibrium prices and equilibrium vectors 

are found. 

- Necessary and sufficient conditions for equilibrium in the 

two-sector model have been proven. 

- The types of equilibrium and semi-equilibrium for the two-

sector model are determined. 

-  Neumann faces were found for the non-degenerate case. 

-  Effective trajectories of models of economic dynamics of  

production and exchange on graphs were constructed, taking 

into account and without taking into account transport costs 
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