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GENERAL DESCRIPTION OF WORK

Relevance of the topic. Beginning in the mid-19th century,
mathematical methods began to be used in economic research. The
creation of mathematical models of the economy served as an
impetus for the development of a new field of mathematics -
mathematical economics. The first works on the study of economic
processes using mathematical apparatus appeared at the end of the
19th century and belonged to L. Walras, V. Pareto and others. The
further development of these ideas is associated with the names of V.
Leontiev and J. Neumann, in whose works simple multidimensional
models were developed economic dynamics. Subsequently, in the
works of such mathematicians as D. Gale, L.V. Mackenzie, H.
Nikaido, L.V. Kantorovich et al., these ideas were significantly
advanced in the study of multi-product models of economic
dynamics. F. Ramsay, J. Keynes, R. Solow, and others also made a
great contribution to the development of mathematical models of
economics.

In the first half of the twentieth century, mathematical
economics had already emerged as a separate branch of mathematics.
Intensive research in various areas of mathematical economics
continues to this day.

When studying models of economic dynamics, of particular
interest are the study of the behavior of trajectories, the properties of
the efficiency of trajectories, determining the growth rate of the
model, solving some optimization problems, etc. In the course of
studying various models and their modifications, various authors
managed to develop approaches and methods applicable to many
models of economic dynamics. A unified theory of models of
economic dynamics was created and it is reflected in many
monographs and textbooks.

This research work also lies within the framework of these
problems and is devoted to the study of some theoretical problems of
mathematical economics, such as the study of the properties of
trajectories of models of economic dynamics of the Neumann type
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with discrete time, the study of the dependencies of certain
indicators, the application of production functions of various types to
the study of production processes, the determination of rates growth
and equilibrium conditions in specific models, etc., which make the
topic of the dissertation relevant.

It should be noted that the results of studies of economic
dynamics models are not only theoretical in nature, but can also be
used to build specific production models.

In the proposed work, the main objects of research are one-
sector and two-sector models of economic dynamics of the Neumann
type with discrete time. Models of this type are extremely aggregated
models of the economy, but at the same time they reflect the
dynamics of relationships between macro indicators and are widely
used in the study of patterns of economic development.

The advantage of such models is that they can participate in
more complex economic and mathematical models as a component,
and the results obtained from the study of such models can be used in
the study of more complex dynamic systems. This type of model was
studied by F. Ramsey, M. Brown, L. Johansen, E. Phelps, Z. K.
Arrow, N. N. Moiseev, V. L. Makarov, A. M. Rubinov and others.

The object of study in the mentioned works was the problem of
the existence of an equilibrium state of trajectories, finding optimal
stationary trajectories in the sense of one or another optimality
criterion, studying the main properties of trajectories, etc.

As an example, we can point out the principle of differential
optimization by L.V. Kantorovich, as well as the principle of
maximum use of the potential capabilities of the economy by A.M.
Rubinov.

Object and subject of research. The object of the study is

discrete one-sector and two-sector models of economic dynamics of
the Neumann type, which are described using multi-valued
mappings. A wide range of issues are studied, including the behavior
of effective trajectories, the study of the main properties of
trajectories, equilibrium conditions, growth rates, the dynamics of the
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interrelations of various macro-indicators, such as consumption,
labor, fixed assets, national wealth, etc.

In this work, these issues are studied using optimization
problems using the apparatus of production functions, in particular
the Cobb-Douglas, Leontief production functions and the function
with constant elasticity of substitution (CES).

Goal of the work. The main goal of the work is to study some
problems of discrete models of economic dynamics of the Neumann
type, incl.

- study of the behavior of trajectories in one-sector and two-
sector models specified by superlinear multivalued mappings in
finite and infinite time intervals.

- determination of characteristic prices and growth rates of the
models under consideration.

- determination of types of equilibria in special Neumann-type
models.

- determination of the degrees of dependence of some
indicators in one-sector and two-sector models.

- solving some optimization problems, including maximizing
total consumption, total output and national wealth
expenses.

The main provisions of the dissertation submitted for
defense.

- effective trajectories of models that allow characterization
have been studied and types of effective trajectories have been found,

- the principle of optimality is proposed, according to which
consumption is chosen so that the trajectory with a given labor force
is efficient.

- the limiting behavior of trajectories under a strict equilibrium
state has been studied,

- for a single-sector model, the dependence of the consumption

function on the type of production function is determined,



- the conditions for maximizing total consumption, total output
and total national wealth are determined,

- necessary and sufficient conditions for the existence of a
solution to the consumer problem are found.

- a theorem has been proven about the existence of a solution to
the consumer problem without losses with a fixed budget,

- using a lossless mechanism, a trajectory was constructed in
one Neumann-type model and the Neumann equilibrium state was
determined,

- under certain conditions for the two-sector model, Neumann
growth rates, Neumann prices and Neumann equilibrium states are
determined

- types of equilibria in the two-sector model are determined,

- necessary and sufficient conditions for the existence of an
equilibrium state in a two-sector model were found,

- the uniqueness of Neumann prices in equilibrium has been
proven

- a Neumann face was constructed for the model,

- models were built using graph theory with and without
transport

Scientific novelty. For a special model of the Neumann
type, characteristic prices and growth rates of national wealth are
determined. The problem of optimal labor distribution in a multi-
industry model has been solved. Using the apparatus of convex
analysis, a connection has been established between characteristic
prices and the super differential of the corresponding functional in
a Neumann-type model.

For a special model of the Neumann type, conditions for the
efficiency of trajectories are found and the principle of optimality
of trajectories is established.



The problems of determining the dependence of the volume
of consumption on the number of labor employed in production
and on the means of production for Cobb-Douglas production
functions and functions with constant elasticity of substitution
(CES) are also studied.

Necessary and sufficient conditions for the existence of an
equilibrium state without losses are obtained and the Neumann
equilibrium state is determined.

For the two-sector model Z2, the Neumann growth rate and
Neumann equilibrium prices are determined, and T - step effective
trajectories are also constructed.

Research methods. The main research methods are
methods of mathematical modeling of economic processes. In this
case, methods of mathematical analysis, the theory of superlinear
multivalued mappings, the theory of discrete dynamic systems,
mathematical programming, graph theory, convex analysis, etc.
are widely used.

Theoretical and practical value. The results obtained in
the dissertation work are mainly theoretical in nature. But some
results can be applied when studying specific economic models.

Approbation of work. The results of the dissertation were
presented at a seminar at the department of “Mathematical theory
of modeling control systems” of St. Petersburg State University
under the guidance of prof. V.F. Demyanov, at the seminar of the
Institute of Socio-Economic Problems of the USSR Academy of
Sciences, Leningrad, under the guidance of prof. A.M. Rubinov,
at the seminar of the Institute of Applied Mathematics at Baku
State University under the leadership of academician. F.A. Aliyev,
at the seminar at the department of “Mathematical Cybernetics”of
Baku State University under the leadership of prof.
K.B.Mansimov and also reported at the following scientific
conferences:

- Scientific conference dedicated to the 90th anniversary of
academician M.L. Rasulov, Baku, 2006.

- Scientific conference dedicated to the 100th anniversary of
Academician A. Huseynov, Baku, 2007.
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- Scientific conference dedicated to the 90th anniversary of
Professor G.G. Akhmedov, Baku, 2007.

- Republican scientific conference, Sumgait, 2007.

- The 1% International Conference on Control and
Optimization with Industrial Applications COIA-2005, Baku,
2005.

- The 2" International Conference on Control and
Optimization with Industrial Applications COIA-2008, Baku,
2008.

- The 3™ International Eurasian Conference on
Mathematical Science and Applications IECMSA-2014, Vienna,
Austria, 2014.

- The 4™ International Eurasian Conference on
Mathematical Science and Applications IECMSA-2015, Athens,
Greece, 2015.

- The 5" International Eurasian Conference on
Mathematical Science and Applications IECMSA-2016, Belgrad,
Serbia, 2016.

- The 6" International Eurasian Conference on
Mathematical Science and Applications |IECMSA-2017,
Budapest, Hungary, 2017.

- The 6" International Conference on Control and
Optimization with Industrial Applications COIA-2018, Baku,
2018.

- The 7" International Conference on Control and
Optimization with Industrial Applications COIA-2020, Baku,
2020.

- The 8" International Conference on Control and
Optimization with Industrial Applications COIA-2022, Baku,
2022

Publications. 34 works have been published on the topic of
the dissertation, including 21 articles in various journals, a list of
which is presented at the end of the abstract.

Name of organization where was performed the
work.The work was performed at the Institute of Applied
Mathematics at the Baku State University.
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Structure and scope of work. The dissertation consists of
an introduction, six chapters, main results and a list of references.
The total volume of the work is 254903 characters (table of
contents- 2863 characters, introduction- 10334 characters,
chapter I- 21000 characters, chapter IlI- 65957 characters,
chapter 1ll1- 25766 characters, chapter IV -51442 characters,
chapter V- 49435 characters, chapter VI- 26437 characters,
rezults-1499 characters). Number of characters in the abstract is
64575 .



SUMMARY OF THE DISSERTATION

The dissertation consists of an introduction, six chapters, main
results and a list of references.

The introduction provides a rationale for the relevance and
degree of development of the dissertation topic. The main directions
of development of the theory of mathematical models of economics
are outlined. The purpose and objectives of the research are
formulated. A brief overview of results in the study area is provided.

Chapter | presents the basic concepts and definitions used in
the dissertation work. It consists of seven paragraphs. The first
paragraph presents the basic concepts from the theory of multivalued
mappings. In this case, the main attention is paid to the description of
superlinear multivalued mappings and their properties. The second
paragraph of this chapter is devoted to the description of discrete
dynamic systems. Particular attention is paid to special dynamical
systems defined using superlinear multivalued mappings. An
economic interpretation of a discrete dynamic system is given.

As is known, processes occurring in the economy are described
by technological mappings.

The third paragraph of the first chapter is devoted to
technological mappings of economic dynamics models studied in this
work.

The fourth paragraph of this chapter describes models of
various types that are often encountered in practice, including models
of the Leontief and Neumann types.

The fifth paragraph provides a description of the equilibrium
mechanisms for constructing trajectories. This approach is widely
used in the study of models of economic dynamics, and the choice of
specific consumption plays a significant role.

The sixth paragraph is devoted to models of expanded
reproduction, which were introduced by A, M, Rubinov. They
describe the interaction of several sectors, each of which processes
its resources into finished products. And finally, in the seventh
paragraph, the definition of the Neumann growth rate and the
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Neumann equilibrium vector is given. A description of the trajectory
IS given that admits the characteristic,

Chapter 11 consists of 9 paragraphs. The first paragraph
provides a definition of a Neumann type model and considers a
modification of V.L. Makarov’s model Z(w)!. Let there ben
technology in the economy. The technology i is described by the
pair(F;,v;) , whereF; is the production function and v; is the
coefficient of preservation of funds. The volume of fixed assets and
the size of the workforce are denoted by and respectively. Thus, the
model Z describing the joint functioning of n technologies is given
by the sequence (F;,vy; F,,vy; ...; E,v,). The state of the
economy in the model is characterized by the vector x =
(KL, ...,K™ LY, ..., LM w?, ..., w™). Here w! is specific consumption in
i - production. A transition from a state x, at an instant to a state
X¢+,at an instant t + 1 is possible if it satisfies the following system
of relations:

Kti+1 < viK{ + Iti+1: I£+1 =0, (D
Ity + wipqLigq < Fi(Ktl' lt)f (i=1n),

Here 1I.,, are investments. Let's fix the sequence w =
(w4, ..., Wy, ... ) and consider the model Z (w).

In  what follows, we consider trajectories x; =
(KL, ..., K L, ..., L) for which the inequalities are valid for each t

Iter = K — viKE >0, tr1>0
We will call such trajectories with the property (A). Let be a
P,, ..., P; characteristic of some trajectory x,, ..., x¢, .... Let's put

th+1 (X) = yrgaa();) Pt+1(y); x = 0.

Lemma 2.1.1. Let g, , (x) = max P..;(y), where x >0,
t+1 yEa(x)
then the functional has the following form
Uppy, = V1P K' + -+ v PO K™ + ' F (K L) + -+
+c"F, (K™, L"),

!Makarov V.L. On dynamic models of the economy and the development of ideas
L.V. Kantorovich // Economics and mathematical methods, 1695, vol. 1, no. 5, art.
10-24.
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where ¢! = max (Ptﬂ, qr-“).

Wiyq

Lemma 2.1.2. The superdifferential dq,,,, of the

functional g, , has the form
0qp,,, = 1Py, s Vn P, 0, ..., 0) + c1OF; + -+ + c"0F,.

Since the trajectoryx, admits the characteristic P, the
following relations hold:

1. From Lemma 2.1.2 it follows that there are for which

P, € 9qp,, h' = (h}, hi,,) € OF,,

P, = (v PL + ¢ hi, ..., v, P + ch, chl, ..., c"hY,

2. Pe(x¢) = Pryq(X41)-

Let be an (x;) effective trajectory of the model Z(w) that

admits the characteristic P, and has the property (A4). Let's consider
the simplest single n-product models of the Neumann type

i, 0\ — b1€+1 b1€+1 i .
t t
and the corresponding growth rates of these models will be denoted

in+£i(m)
by af = =3 max LA, where = 7£,(1) = Fi(n, ).

Let's denote ¢, = (b},..,b 1,1, blw}, ..., bF twl ™1, wh).
Let us further b assume that all the parameter b, in the
period [t,t + 1] are known and x = (K1, ..., K™, LY, ..., L™)is the state
of the economy at the moment ¢, which transitions to the state y =
(K1Y, ..,K™ LY, ..., L™). Since, represent the means of production and
the consumption biwf und in the i-th production at the moment t for
the state x = (K1, ..., K™, L, ..., L™) (in value terms), then the values

n

te(x) = Z bé(Ki + w1§+1Li) U L (y) = Pe(x) =

n
_ z bisr (vik! + Fy(K', 1Y)
i=1
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can be interpreted as national wealth at moments t and t + 1 .

Theorem 2.1.1. For trajectories with the property (4)

at =a? = =al = a,.

The second paragraph of Chapter 2 is devoted to the study of
effective trajectories of the model Z(w). Let us consider the
trajectory (x;) of the model Z(w), admitting the characteristic p, =
pif:, Where

£, = (b}, ...,b} L, 1, btwl, ..., b twl 1, wh).

Theorem 2.2.2. 1) Let the x, = A;x, effective trajectory of the
model Z(w) emanate from a strictly positive point x,. Then a) the
sequence x{* is an effective trajectory of a Neumann type
model Z™(w™), defined by the set (F,, v,, w?), b) if y!K}., = v;K}
, then (x{) is an effective trajectory of the model

L L
Zi(wi) _ <blt;;1 Fi,%vi, w%) (i=1n),
t t

2) If (x{)is the effective trajectory of the model Z'(w')
emanating from the point x5 > 0, then (x,) is the effective trajectory
of the model Z (w).

In the third paragraph of Chapter Il, it is assumed that the
vector L, = (L}, ...,L}),LL =0, ¥, Ly =1 is given, where L, is
the total number of the workforce. Based on the setw =
(w}, ..., w}), a model Z(w) is built under the assumption that x, =
(K3, ..., KM L, ..., L) its state lies on the effective trajectory of the
model, which has characteristic. Using a well-known formula, the
wage rate P; is established and the state of the model Z(w) is
determined.

Let us introduce the simplest2n one-sector models,

ZH(LY),ZzY(w') i=T1,mn, specified by the same set

(b:;;l F;, b;’;l v;, wi), in which the coefficients b, i =1,n, are
t t
determined by the characteristic prices P, of the model Z(w) state x;.

In the model Z{(L'),L. is considered known, and in the
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model Z*(w"), specific consumption w},i = I,n is. The controlled
parameter in is wt. An optimality principle is proposed, according to
which it is chosen so that a trajectory (K;,L;) with a given labor
force L, would be effective in the simplest model (F, v, w), which is
obtained for a given w .

Using the above optimality principle, it is possible, on the one
hand, to determine the state of the model Z(L), and on the other, the
state of the effective trajectory of the mode Z(w). Let us prove the
last statement.

A sequence (K¢, LL) with a fixed labor force L, when selected
as a function o w} is the efficient trajectory L of the model Z*(w").

The fourth paragraph of Chapter Il discusses one method of
distributing labor. It is assumed that the total number of labor force is
constant and equal to one. Let's consider the case when the wage rate

in each of the industries is the same, i.e. w} = w? = -+ = W! = w,.
Thus, it is required to find such a distribution of the total
number  of  labor  forcesL;,,,t=1,2,.., into labor
forces L., (X, Lt,, = 1), that
Wir1(Ltpr) = 0Fp (L) = - = iy (L) -

Theorem 2.4.1. The equation L,,,(w) = 1 has a solution if
and only if lim L, ,,(w) < 1; This solution is the only one.
w—S

Consequence. If F;(i = 1,n)the Cobb-Douglas function,
then the conditions of Theorem 2.4.1 are always satisfied F;(i =
1,n).

Theorem 2.4.2. a) If the initial wage ratew; belongs to the

interval [@?, @?], then for all w, € [@!, @?] and t, at the same time,
forall w, » @2, BZ > 1,6 <1,limL} = 1,limLZ = 0,
b) if w; < @?, then T there is a moment in time such that ! <

wr < @2, and increase, (0, @],
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¢) w; > w? if w, > @? and for all t, then decreases, w,
tending to @?, and L' = 0.

Theorem 2.4.3. a) If w; € [@!, ®@"], then for all w, € [@?!, @"]
and t, w, » @™ LF > 1,11 > 0,i <mn,

b) If w, < @?!, then there T is a moment in time, and @?! <
wr > @ increases w, < @'T : @' < wy < @™, w, in (0, @1],

c) Ifw; >w" and w, > @™ for all t, then decreases, w,
tending to ™.

In the second paragraph, the total labor force L =1 in the
model Z distributed between two industries so as to maximize total
consumption, while the constant elasticity of substitution (CES)
functions is considered as production functions:

1
Fi(KLLY) = (AR, PP+ BiL,Y) 71, =12
where p; > 0. So, we consider the problem
W1 (Ltsq) + Wt2+1(L_%+1) — max
given that Li,, + L?,; = 1. Here W/, (L.,,)is the consumption
fund in i - production. Li,, can be expressed as a function of a
variable nt, ;:
S Mt
th+1(77§+1) =7
¢i(ﬂi+1)
that's fair
i i _ ifi(’h’éﬂ) - 7I£+1fi,(7ltlé+1)
Wt+1(Lt+1) = M; i i
Villerq T fi(77t+1)

Lemma 2.5.1. Let the following conditions be satisfied

)

a) 72 > 1%,

b) 12 < I for some point in time 7. Then [2,; < [2

15



Comment. It is easy to check that the condition is satisfied if

1>n [ 1 1 ]

A E p! o SNo )
41 (1-wv)r
|[<(1—v>(1+p>1 ) ’ J|

Theorem 2.5.1. Let the following conditions be satisfied

a) Moy <772 >n?
b) L2, =L%andM,_; = ®,(7).
Then L2 < [2 forall t > 7, and L2 decreases.

In the sixth paragraph this chapter examines a model Z
consisting of the simplest n single-product models of economic
dynamics and provides a description of the model Z = (F;, v;, w}).
So we denote single-product models and assume that the wage rate in
all models is the same at all points in time

wi==l=w t=12,..
In the same section, the asymptotic properties of the model
Z trajectories are studied. Through
i v;K + F(K,L) vin + f;(n)
a' = max = max————. (2)
kK120 K+ wlL >0 N+ w
let us denote the growth rates of the models Z,}i = 1, n.

From the properties of the trajectories of a model with a strict
equilibrium state it follows

Theorem 2.6.1. For any trajectory there is (x;)

K+ +K'+wl,

lim - =1>0.
a

If1>0,then =7, =t - 0,i =T,n—1.
t

Let the function g; be defined by the equality g;(n) = v;n +
fi(m (i = T,n). Then it is fair.
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Theorem 2.6.2. Let the equalities be satisfied for the
sequence n{* and 7 is the capital-labor ratio at which the maximum in
(2) is achieved at. Then

1)  nf decreases,

2) nt-n, if and for everyone, ni>n,éF<

: Gn®)  fn(P) H n — n : Gn(?)
min (—ﬁn(ﬁ) , —) forallt, if ny—=1n, or &> min (—g”n(ﬁ) ,
%’“)) at least one t, then the sequence becomes n, starting from a

certain point, negative.

Let us assume that a™ > a',i # n and denote @ = a™, x =
(0,...,0,K,L), where, K = K™ L =L" and K, L, is selected from the
conditions K + wL = 1,a = v,K + E,(K, L). The capital-labor ratio

n =§ at which the maximum in (2) is achieved ati = n is called

optimal. Since a = a™ = y™5, then the optimality of the capital-
labor ratio @ = a™ = y™ is equivalent to the equality

a = vp + fr(@. (3)

The seventh paragraph is devoted to the study of the properties

of trajectories of a model Z of the form (K2, ...,K/*, 1), Lt + -+

T=1.

t Let n=2.Let us define a setU as a collection of pairs
(K1, K?) such that a trajectory of the form (K}, K?, 1), Lt + 12 =1
emanates from a point (K1, K?,1). Let us note some properties of the
set U .

1. U stable (in the sense R2 of); if and (K, K?)>
(K',K?),(K',K?) e U, then (K*,K?) € U.

2. U the set budged.

3. The point where and is such that (0,47) € U,A1>
1,a(w(ﬁ)) =1.

Let

(K4Lg,1) ea(KLf—¢e1); 0<e<T, (4)

where 1 = L'+ 12 = [' + [

17



Let's € > O fix it and let
Le(Ll) = —(1—172)77—1725+F2(77_5'1_Ll)- (5)
It is easy to notice that the function £.(L') is decreasing and
concave. Besides, £.(L!) > w.
Consider the equality
Fo(M—¢1— MN—v,e=(1- V)7 (6)
It is easy to check that (6) has a solution if and only if
F,(n—¢61)—vy,e>(1—vy)1.
Since and, then ' = 1 — [2wI? = £.(LY),

Fi (K% LD > 0 — Lo(LY) = L(LY). (7)
Theorem 2.7.1. (7) has a solution for some if and only if
F{(K*,0) = F{(77,1). (8)

Note 1. For the Cobb-Douglas production function, condition
(8) is always satisfied, since F| (K1, 0) = +oo.

Note 2. For the CES production function, relation (8) is
equivalent to the inequality

1 1+py
By P12 By(A;77 P2 + By) 2.

There is great interest in Neumann-type models of economic
dynamics causes asymptotic behavior of trajectories of various
classes. In the eighth section, the asymptotic behavior of trajectories
with an average growth rate « is studied. These trajectories are of
both independent and applied interest: in some cases, they make it
possible to describe the asymptotic behavior of optimal trajectories.
Let us give its description.

Let Z- a convex cone lying in RT x RT and such that B.Z n
intR} # @ . Let us call the Neumann growth rate of the cone Z the
number

a = sup miny—z,
(x,y)€Z el X
where I = {1,2, ...,n}.

We call a sequence (xi,yx) of elements of a coneZ

Neumannian

_ oy
(i, yie) = min s,

18



Let us introduce a set of indices. I, c I into consideration.
Number i € I if and only if (x, y;) there is a Neumann sequence
such that yi >0 (k = 1,2,...).

Let Z be the Neumann-Gale model. A cone generates a finite
sequence Zj, ...,Z,, Z, of cones as follows. Let's Z;, = Z put, let's
denote R} =K;. Thus, Z; c Ky xK;. If I' =1, =1, then the
process is over; if I' = I, then consider the face K, of the cone
R™ spanned by unit vectors with numbers from I\I* , and define Z, it
as the projection of the cone onto the face K, x K, of the cone R} x
RE.

If 1> =1, =I\I", then the process is over; otherwise,
consider the faceK; of the cone spanned by unit vectors with
numbers from, and denote Z; by the projection Z, onto the face
K3 x K3 of the cone R} x R} . If I® =1, =I1\(I* UI?), then we
build a cone Z,, etc. This process will end at some step N.

As a result, we have constructed cones Z; and sets of indices

P(G=12..,N), Unl"=0,I' =1, (j#j;)and Let us denote
by the Neumann growth rate a; of the cone Z;. We will call the
number the quasi-growth rate a; of the model. It is known that
aj_1 > Q.

The highway is the conical shell of the set M, of all pointsa of

all trajectories xy with an average tempo that are limiting in angular
distance The angular distance between points is called the quantity

Let us denote by the conical hull the sets A, of all points of all
optimal trajectories that are limiting in angular distance.
The Neumann-Gale model Z < R} x RY, which has quasi-
tempos, and its dual model Z'are considered.
Lemma 2.8.1. For any quasi-tempo a;, any number 1 > a;,
any index i € U?’ 1, and any trajectory X = (x,) there is a limit
limA~tx{ = 0.
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Theorem 2.8.2.Let be the Neumann-Gale model Z and there
be a trajectory X and an infinite set of time momentst such that the
sets of indicesI = {1,2,...,n} can be divided into three subsets
J1,J2, ] as follows

x¢ = 0 foranyone i € J;,t €1, 9)
0<c <x{<c,<ooforanyonei €/, ter, (10)
lim x; = 400 for anyone i € J5. (11)

Then for any point satisfying the conditions x € R}
xt = 0 foranyone i € J; U J,,
xt > 0 for anyone i € J5.
there X; is a trajectory that satisfies conditions (9)-(11) and has
among its points limiting the angular distance the point x.
The ninth paragraph of the second chapter is devoted to the

study of the main properties of the trajectories of models of
economic dynamics. Let the simulated economy consist
of n industries, each producing different products. Phase space of the
model — cone (R})™. Vector x = (x',...,x™) € (RT)™ is the state of
the model, vector x* = (x¥) € R%}- vector of resources at disposal i -
oh industry. Production activities i - th industry is described using a
superlinear continuous production function ®%:R? — R, and
diagonal matrix A%, on the diagonal of which there are numbers v¥ €
[0,1](j = 1,n). It is assumed that ®(x) > 0 then and only when
x €K, where K={y€R"y, >0@=1mn)}. The production
display is defined as follows:
a(x) ={y = (") e RHM0 <y’ < Alx' + d},

n
di = (d)20,) a¥ < @iy, = Tnf,
i=1

where x = (x,...,x") € (RM)™.
Consider the superlinear normal mapping b:R} — mw(R}),
whose Neumann growth rate is equal to a, and there is a state of
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equilibrium (a, (x, ax),p) such that p € K. In the future we will
need

Lemma 2.9.1. Let (x;)- display trajectory b with an average
growth rate a; £ (respectively 0,) — set of limit points of the
sequence {a~tx,} (respectively {a~t(x;,x.+1)}). Then for anyone
Yo € 0 (respectively (y,,y1) € 2,) there is a sequence {y}(t =
0,+1,...) such that y, € a0, y,.1 € b(yy).

Lemma 2.9.4. For anyonex € R", integer m = 0 performed

”Bmx — (ri(p))_1 amxir(p)H <

< ||A‘||m ”x — (r‘(p)) 1xlr(p)”.

Theorem 2.9.2. Display trunk a'is the beam {Ap|1 > 0}.

The third Chapter consists of five paragraphs and is devoted to
the study of the consumption function in single-product models of
economic dynamics. The first paragraph of this chapter describes the
model. The model is given by the relations

0<K<vK+I 1>20, I+wlL<F(KNL)
and it is assumed thatF, = F,v;, =v and a constant srate of
accumulation is given, independent of the size of the labor force .
Let, L = B - L, where g is the growth rate of the labor force. Then
W(L) = (1 —s)F (1?% L),

and specific consumption w is expressed through the accumulation
rate s by the equality

_ww K L1\_ 1
w_T_(1_S)F<f-2',§>_(1_S)F(n'1)ﬁ_
- (-5 £ (12)

The second paragraph of the third Chapter is devoted to the
study of the dependence of the consumption function then W (L) on
the type of production function F; = F. Since for everyone, then
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:f(n) —nf'(m

O )
where is the root of the equation n = n(L)
M @) =nf'm)
n=- : (14)

L v+f'(m) i
Here M the quantity denoted by is national wealth vK +

F(K,L) at the momentt. We assume that the function f is three
times continuously differentiable, and f'(n) > 0" (n) < 0n > 0 for
n>0

Theorem 3.2.1. Let F(K,L) = AK"L*",0<r <1 be the
Cobb-Douglas function and w the specific consumption is calculated
using formulas (12) and (13). Then W is an increasing concave
function, and LhT W(L) - +oo.

Let now be a function (CES). Further. Let us introduce the
designation. Then for we get

1

F(K,L) = (AK™® + BL™P)%p > 1,Y = A + Bn”.

It is assumed that,
1
W'(L) =pu (anp — vAp — ApY_E)
where p > 0.
That's why
1

Sign W'(L) = Sign (anp —vAp — ApY_E).

Lemma 3.2.1. The equation g(n) =vBn?—vAp—

1
Ap(A + BnP) » =0 has a single root 7, on the positive semi-axis,
andat n >, g(n) >0andatn <; g(n) <O..

1
Theorem 3.2.2. Let F(K,L) = (AK™P + BL™P) », where p >
1 and specific consumption w is calculated using formulas (12), (13).
Then:
1) the function W (L) has a single inflection point L, at
which it changes concavity to convexity, while L, > L;;
2) lim W(L) = 0.

22



The third paragraph of the third Chapter is devoted to the study
of the dependence of the volume of consumption on the means of
production. Let L andL and w be given and calculated using
formulas (12), (13). It is shown that in this case, consumption w at
the moment ¢t + 1 will depend on the volume of funds M = vK +
F(K,L). Since L ,and L are fixed, consumption depends on K , From
equation (14) M can be expressed as a function:

u(n)
M) YEan

Note that M the increasing function, and

Am M) =0, lim M) = co.
We have
§(n(M))
B(n(n))

1
Let's assume that F(K,L) = (AK™P +B;L™°) » the CES
function. Let us introduce the following notation
d(m) = di(n) — d2(n),

1 1
d,(n) = (—anp + vAp + ApY7> (1 + vAYF_l),

WM)=L-w(M)=1L

d,(p) = v(1 + p)B2n? (1 + vﬂ) y-1,

Obviously. W = 0, if and only if d,(n) = d,(n). You can
easily calculate and.

Similar to theorem 3.2.2, it can be shown that there is a unique
point M = M (7,) where 1, is the root of the equation d(n) = 0 such
that W' (M) = 0.

From the results obtained it follows that

lim W(M) =1L lim @:E lim 6(n).

M-+ n—-+o0 v V n—+o
It is easy to check that in the case when that F(K,L) =

AKTL}™" is the Cobb-Douglas function, lirp d(m) = +oo. If
77—) (00}

F(K, L) is a function with constant elasticity of comment (CES), then
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lim §(n) =B ». Indeed, let F be the Cobb-Douglas function.

n—>+oo
Since in this case Ff(n) = AnP, it follows from (3.2.3) that
lim 8§(n) = lim (An? —ndpnP~1) = lim AnP(1 —p) = +oo.
17—>+oo 7]—>+oo ‘q—>+oo
For the CES function we have:

1
p 1+;
lirjp 6(m) =B lim —(77 ) - =
T]—) (o]

1
=B lim ————==8"7.
n—-+oo 4 +;
(55 +8)
Thus, for the Cobb-Douglas function, consumption and W (M)
is an increasing concave function, and in the case M“T WM) =

+oco where F is a function with constant elasticity of substitution,

consumption W (M) is an increasing function that has a single
inflection point M, at which it changes convexity to concavity, and
lim W(M) < +oo.

M-+

In the fourth paragraph of the third Chapter, several indicators
are maximized, including total consumption, total output and total
national wealth.

n
Z W;(#¢;) -» max, (15)
i=1
n
Z F(K% ¢;) > max, (16)
i=1
n
Z viK' + Fi(K', ¢;) > max, (17)

=1
given that, 0 < ¢; < L Y-, ¢; = L. Here W;(¥;) is the consumption
fund, F; is output, F;(K' ¢;)+v;K' is national wealth in the th

24



model under the assumption that specific consumption is selected
according to formulas (12), (13).

Theorem 3.4.1. Let F;i = 1,n be the Cobb-Douglas function.
Then in problems (15)-(17) the vector #; belongs to the interior of
the cone R} (£ = 0).

Theorem 3.4.2. Consider the models (F;,v,) and (F,,v,),
where F; are the CES functions

1
Fi(K, L) = (AiK_pi + BiL_pi) pi' (l = 1' 2);
and p; > 0. Then total consumption W;(#;) reaches its maximum on
the segment [0, L] at the point ¢; = L if and only if L < L;, W/ (L) =
1

iBi P > I and total output reaches its maximum at the point L if
1

and only if F/(L) = B, Li#j. Here L; is the only point of
maximum of the function W; on the positive semi-axis.

Theorem 3.4.3. For any production function F in problem (17)
£, < 1.

In the fifth paragraph of the third Chapter, the question of the
dependence of the volume of funds on the size of the labor force at a
constant rate of accumulation is studied within the framework of the
simplest single-product model.

Let us assume that in (1) equality is realized and s constant rate
of accumulation is given, independent of the size of the labor force,
i.e. I, = sF(K; L;). Then

Kiyq1 = VK; + sF (K, Lg). (18)

Let's introduce the function

g(K¢) = vK, + sF(Ky, Ly).
Then
K1 = g(Kyp).

Let us first consider the case when for all . LetL, = Ltg(K) =

vK + sF(K, L) where

L
K—g‘(K)zK(l—v—sF(l,E)), K+0. (19

Due to concavity g, the equation
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K =g(K) (20)
has at most two roots, one of them being the point [0, +o0). Let us
assume that there K, =0 is a solution to equation (20) that is
different from zero. Then from (19) it follows that the relations

K>KK<K), gK)<K@GK)>K) (21)
are equivalent.
Proposition 3.5.1. Let g some function be defined on (0, +0),

increase and the equation K = §(K) have a unique solutionk, and
relations (21) are equivalent. Let, further, the sequence K, satisfy the
equalities K,,, = g(K)(t=0,1,..)and K, > 0. Then K, - K,
and if K, > 0, then K, increases, if K, > K, then K, decreases.

Theorem 3.5.1. If K, = 0 the only root of the equation K =
G(K) on [0,+o) and for the sequence K; satisfies the equality,
K:+1 = §(K;), then K, decreases and K; — 0.

Theorem 3.5.2. Let the sequence K; be constructed using
formula (18) for a certain initial volume of funds K,, and the
equation K = g, (K) has a positive solution starting fromi =z,
Then K, - K/, and if K; > K, forall i > 7, then K, decreases, but
if exists m > : K, < I?Lm, then the sequence K, decreases until the
moment m, after which it increases

Corollary 1. If the equation K = g,/(K) does not have a
positive solution, then the sequence K, constructed using (18)
decreases and K; — 0

Corollary 2. Let T =m = 0 in theorem 3.5.2. Then K, - K,
and 1) if K, < K, (i.e. m = 0), then K, increases; 2) if K, > K, and
m # 0 a), then K; decreases until m, after which it increases; b) m
does not exist, then K, decreases.

Theorem 3.5.3. Let K;, under the assumption made above, the
sequence be constructed using formula (18) for a certain volume of
funds K, and the equation K = g;.(K) has a positive solution for all
i=0,1
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Then K, —» K;», and if K, > K, then K, decreases, if K, <
K, and a) K; < K;_ for any i, then K, increases; b) there 7: K; >
K,_isamoment, then K, it increases to, after which it decreases

Let us denote by the K! root of the equation K! = vK! +
F(KY, L), where K* = K* do we have

1-v F/(K.,L) L
S = 7@ =I (1'ﬁ> =011,

where &, = ;—’1 and therefore Q! (151) = &, . Therefore &K' =6,

where

1

=iy
ot (%)
Similarly, K? =6,(L—L"), where K? is the root of the
equation

0,

-
()

L-L L-L
Q2(52)=F2<1:T>: é = 7

K? =vK? + sF,(K*>L-L), 0,

Theorem 3.5.4. Let K, K ? it be positive. Then the maximum
in the problem is achieved at one of the ends.

Chapter 1V consists of six paragraphs. Since in the future
reproduction models will mainly be studied, the first paragraph
provides a description of the reproduction model with Leontief-type
production functions. These models were introduced by A.M.
Rubinov?.

The simulated economy consists of n industries, each
producing one product, with different industries producing different

2 Rubinov A.M. Mathematical models of expanded reproduction. L., Nauka, 1983,
185 p.
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products. Phase space of the model — cone (R})™. The vector X =
(x1,..,x") € (RM)™ is called the state of the model, x* =
(x*1, ..., x*¥™) € R7— the state of the k — th industry. The production
activity of the k- th industry during the period [t,t + 1] is described
using the production function F¥ : R} — R, and the diagonal safety
matrix Bf, on the diagonal of which there are numbers vk €
[0,1]( = 1,n).
It is assumed that

xt i -
Ftk(x)=irl}1i_I}lC7(x20, ¢/ 20, i,j=1n t=0,1,..).
Bt

Thus, if the k-th industry at the momentt has a vector of
resourcesx, then at the moment ¢t + 1 after the production process it
will have a vector of resources BY - x and a newly produced product
FE(x) in quantity.

Let us introduce a superlinear operator (B - F); : (R})™ — R}
and (B F)¥ : R? > R}

(BF)k(x) =Bf-x+(0, .. o Ff(x),0,..,0)(x €R}), (22)

(BF), (X)—Z(BF)R(x )—ZBt X+ (FLGE, o FEGE))

X = (x*, ") € (R™M).
Model with production display
a,(X) = (0, (BF).(X)) (xe@®DY  (23)

denote by Z.
Note that the production display of the industry at the moment
has the formafkt

af () = (0, (BPEX)) (x € RY).
The second paragraph of Chapter 1V is devoted to equilibrium
mechanisms for constructing trajectories of economic dynamics
models. Let at some moment t be given the security matrix

B*and F*(x) = mm—(k 1,n) . Let us denote the vector of

prices £ = (¢4, .. {’") at the moment t. The total wealth of industries
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at these prices and the vector of resources x* = (x1, ..., x™) at the
moment ¢t will be denoted by

U (¢,x) = max{[¢,y]ly € a*(x)} =

= [¢,B¥x] + ¢¥F*(x), (k =1,n), (24)

Usually called the industry utility function. Let U*(k = 1,n),
A= (2%, ...,2"),wherel* are the given budgets of the k —th
industry, be the vector y of allocated resources. Consider the
equilibrium model

M ={y, U($),A}

with fixed budgets.

Let x, = (x}, ..., x]*) the state of the economy be known at the
moment ¢, Based on these data, the vector y,,; = (i1, ..., Vit 1) 1O
be distributed is determined at the moment ¢t + 1.

Vi1 = zvt xtt 4+ FE(xf) (i = T,m).
Attitude
Uk, x) _
k = . =1 € R} 2
ue (£, x) P.xl k N, X r (25)
we will call the growth rate of the total wealth of the k-th industry in
the state x.
The same paragraph provides a description of the consumer's
task. Let the production mapping a be specified at the moment t:

ax) = {f — &Y. x) e RO |0 <Z 7 <Zkak +

+(F1(x), .., F*(x™)), xF = (x*, ... k") k = 1 1,n}, (26)
Let the vector be a solution to the problem of the k — th consumer:

Uk(¢,x) > max,x eV ={x>0,[P,x] <1}k € 1.(27)

Then the equilibrium vector x*" has the form:

xk =2k x*(k €.
The task is the following: does there exist a model M with data
vkt and c*, in which the set (P, x", ..., x™, y) is an equilibrium, then
29




find it, that is, indicate such and , that this set is the equilibrium state
in the model {y, U(#), A}. This problem with 2n unknowns is £
and A%
Let us introduce the notation x € R}
L(x) ={i e I|x' =0},
L(x)={iel|x' >0}, (28)
Q*(x) =I|R*(x), (keD.
Lemma 4.2.1. Let x be the solution to the problem of the
k —th consumer. Then, if I;(x) # 0, then I;(X) c R*(%).
The utility function of the industry at a point has the form
]

x
Uk(e,x) = ZW vi - xd +{’km1nc—k,

(k€ D),
JEI
where £ = (£%,...,4™) is a given price vector. Let's introduce the
vector
ok = (gt -v*L, L e R, kel
In this case, the expression U* (£, x) will take the form
7 J

Uk(E) = UK (8, %) = [£% %] + £ r?m:— k€D

To study the problem of the k — th consumer, we apply
necessary and sufficient extremum conditions, according to which a
maximum is reached at a point x if and only if

(U")'(x,9) <0, VgeG(V)(keD,
where G;z(V) the cone is defined by the formula

Gz(V) ={g€eR™|[P,g]=0, g'=0, VieL(X)}

It is well known that

W' (% 9) = q“(9),

jk’

where
q“(9) = [£§, g1 +£*+ min 9 g € R"
v jERK (%) cik”’ '
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Let us introduce the notation

s g

k = fk - e el).

q*(g) ;i T (kel)

Thus, if a maximum is reached at a point x, then
q“(9) <0, VgeG(V)
={g€R"[P,gl=0, g =0, Vie,(}¥)}
where I; (k) the set is defined by formula (25).

Lemma 4.2.2. The following conditions are equivalent:
1. q®(g) <0, VvgeQqQ,
2. Juk >0, uk-Peagk
where dq” is the superdifferential of the function g*.
Lemma 4.2.3. The superdifferential q*(g)(g € R™) of the
function g*, defined above, has the form
aqk = £X + ag*, (kel),
where £k = (#1-vF1, . £ - pkM),
G*(g) = ¢+ min

jerk(x) ctk’

i
and
agk =1 =¢k- (7L, .., fm|3ai =0, Z ai=1
JERK(X)
i ai i
ft= L i ERK(X), ft=0, i€ Qk()?)}, (k €1).

Lemma 4.2.4. The number u*(k € I) defined in Lemma 4.2.2
is equal to:

uk

‘Bk + ZiERk(f) ‘Bl " Ukl " Clk

- ZiERk(f) pi . cik
Theorem 4.2.1. Let P = (P1,..., P™) a strictly positive vector
be given, the index k € I and the number u* defined in Lemma 4.2.4.

(kel.
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A vector x is a solution to the k -th consumer problem that satisfies
the relation if I,(x) = @ if and only if
. {fi-vkizuk-Pi, VieQx),
o -vM < pk- Pl Ve RR (%),
2. P€ % (2% + ag"),
where €% , 0", are defined in Lemma 4.2.3.

Comment. If R*(x¥) =1={1,2,...,n}, then the number u*
defined above is the maximum growth rate of the total wealth of
the k- th industry

Proposition 4.2.1. Under any conditionsm € I

1. q®(g) < 0forall g € Gz(V),
2. gk (@ < oforall g €T,
are equivalent.

Theorem 4.2.2. Let a strictly positive vector P = (P1, ..., P™)
be given

1. If the vector X for which

L(x)#0
is the maximum point in the problem of the k — th consumer, then
m € Q¥ (x) when the following relations are satisfied:

l m
ki k : k(w
ﬁvlsp—mv m.o Vie€R(X), “
2 Wi T .
ki . km : =
PV = om v VjeQ (x)
when the m € R¥(x) are satisfied
A
(—.vkl <—vM, VvieRKX), jeEQ*(X)
pi’ = pi ()
ﬁvki:ﬁvkm Vi € R¥(%)
P pm= '
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2. LetI,(x) # @ and for somem hold (*) (if m € Q*(x) ) or
(**) (if m € Q*(x) then the vectorx is a solution to the problem of
the k — th consumer.

The third paragraph of Chapter 1V examines lossless
equilibrium problems in models of economic dynamics with a fixed
budget.

Let/ ={1,2,..,n} and x* be the maximum point in the
consumer problem.

Definition. We call an equilibrium {P,x',..,x™, A, y}an
equilibrium without losses if forall k € I

R*(x*) =L

Definition. Prices P = (p}, ...,p™) determined in equilibrium
without losses will be called equilibrium prices without losses.

Let us consider the problem of the k -th consumer without
losses. To study the problem, we apply necessary and sufficient
extremum conditions, according to whichx a maximum is reached at
a point if and only if

(U (x,9) <0 forall g € Gz(V),
where Gz(V) ={g € R"|[P,g] =0, g =0, Vi€ I,(¥)}.

As is known, (U*)'(x, g) = q*(g), where

L

g
k — [pk k. =
q“(g) = ¢z, 9] +¢ jmin T

Then in our case (without losses) we obtain that the necessary
and sufficient conditions for optimality x in the industry k take the
form:

(k€.

l

q“(g) = [¢5, 9] + €% ‘}2;“57
vgeQn={geR"[Pg]=0}

Lemma 4.3.1. The number p*(k € I) defined in Lemma 4.2.4

in the case without losses (R¥(x) = I) coincides with the maximum

growth rate of the total wealth of the ith industry k and is equal to

<0,
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p 28 + [£K, ¥
W =—5 7
[P,c*]
where £k = (£ - vk, ., 0 - vk,
Theorem 4.3.1. Let P = (p?,...,p™) a strictly positive vector
be given, an index k € I and a number u* defined by formula (25).
The vector x is the solution to the problem
Uk(£,x) >max, x€eV={x=>0|[P,x]=1}. (29)
satisfying the relation

(keD,

R¥(x) =1
then and only when
1. ¢-vM <uk-pl, vjeRF(x),
2. pEe ﬁ({){; +0G").
Comment. Given u*, the equality from Lemma 4.3.1 can be
considered as a system of n linear equations with respect to variables
- the coordinates of the equilibrium price vector p without losses:

[P, c¥] = uik (O + 2%, c¥T)(k € ),

where ¢® = (c1%,...,c™) and £k = (#1 - v, .., €7 - vF™),  vice
versa, at given prices p the maximum growth rate u* of the total
wealth of the k(k € I) —th industry is uniquely determined from the
equality in lemma 4.3.1.
Lemma 4.3.2. Let the given numbers ' > 0,u* > 0,v/t >
0,c” > 0(i,j,k €I and (P,x",...,x™) be the lossless equilibrium
in the model U/ with utility functions, budgets A/ = [p,x’] and
distributed vector y = Y™, x" (i € I).
Relation 2) in Theorem 4.3.1 is satisfied for: Vk € I if and
only if for any v/ > 0 and u/ (i, j € I) satisfying the equalities
z,uj(vﬁ +ujcij) =0, Viel,
jel
inequality holds
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z ZUﬁ-#i-vﬁ+uf<{’f+24i-vﬂ-c”> <0.

JEI i€l i€l
Lemma 4.3.3. Let the numbers v/* > 0,c¢’t = 0,(i,j € I) and
the determinant |c| # 0 of the matrix be given. The following
conditions are equivalent:
1. numbers v/t > 0,u/(i,j € I), are such that the conditions
of Lemma 4.3.2 are satisfied;
2. £ (i,j € Dnumbers such that forv i, j € I is satisfied

3. U SR (C D)L (0 4 Ty - vk
c™)|ck| <o,
where cf is the (n — 1) x (n — 1)order matrix obtained from the
matrix c¢ by removing the k — th column and i — th row.

Theorem 4.3.4. Let the numbers v/* > 0,c¥ > 0 (i,j € I) be

such that and mé",xvﬁ > 0. Equilibrium prices without losses for
]

given, and some v/, cY , ¢t > 0,(i € 1) exist if and only if the
inequality in the second paragraph of Lemma 4.3.3 is satisfied; in
this case, the coefficients u*(k € I) and equilibrium prices P are
related by the formula
WeP, c®] = 25 + [ €5, c*l(k € D),
where c’® = (c1%, ..., c™) ek = (£1 - vFL, L, o7 - pEM),
Let's enter the numbers

( j
{;ivji+(_1)i+j+1m €j+ztpm_vjm_cmj ,
|C| mel
j if k=j (i,j,k€el),
9 =4 J; J @ kel
(_1)i+k+1 | | ({k Z m. >
mel

\ if k+j,
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and vector

kj
—d;

di=| ' |kjeD.

-

Proposition 4.3.1. The number u/(j € I), exists if and only if
there k, € I is an index and such that g*

n2

ko > 0, Zﬁ"d"j >0 (e,
~ . k=1
where d*/ defined above.

In the fourth paragraph of Chapter 1V, using an equilibrium
mechanism without losses, trajectories are constructed in the model Z

, which is specified by the mapping
n n

a(x) = {f = (3?1', ., X)) e (R kai < zvkixki +

kel kel

ij
+rr_1inx—.., xk = (K, LX), kel v¥eo,1],
jer ¢t
>0, (i,jeN}.

Recall that the equilibrium (P,x%,...,x™,y) is the se, and if
equilibrium exists, then the vector x*'is necessarily proportional to
the vector ck(k €1). Ify & cone{c|i €I}, then equilibrium
certainly does not exist.

Therefore, it is advisable to provide a necessary and sufficient
condition for the existence of equilibrium prices without losses.
According to Fang Zi's theorem? the necessary conditions for the
non-existence of equilibrium prices without losses can be formulated
as

3 Fang Ji. On systems of linear inequalities // In the book: Linear inequalities and
related issues. M., IL, 1953, p.214.
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Zvﬁ = —Zufcif, viel, (a)

jel jel

for which the inequality hold
Z Z Wwipiyit 4y (ff + z eivficif) >0.  (b)
jel \iel i€l
Let us introduce sets of indices
J,1() = {] €l |v1‘ = maxv }, Viel,
1) = {] €l |£1 + v/icy = I]rclgl(fk + vkic”‘)}, Vi€l
Let the vectors £ = (£1, ..., £™) be normalized by the relation:
Z{)i —1, £>0 (ieD.

Occurs
Lemma 4.4.1. Let the conditions be met

Z{)i:L >0 (ieD),

and inequality

maxvﬁ . ) o
BV S s (e i), e
JAO] i JEl

1

where |/, (i)] is the number of elements in the set of indices J; (i). In
this case, there are numbers u’(i,j € I) and satisfying condition (a)
for which (c) holds.

Theorem 4.4.1. Let the numbers v/t > 0,#' > 0(i,j € I), be
such that maxv/t >0, ¢ = 1u/ = 1(j €1). If equilibrium
prices without losses for given v/%, £t and somecY > 0(i,j € I)
exist, then an inequality of the form holds:
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méﬂlxvﬁ
[ z ij _ (¢ + viich) | < 0
min c min + v/*c S U
jEl l €l
e\ h@T £a "
Let's consider the Neumann-Gale model and define the
Neumann equilibrium state in this model Z. Recall that the non-
degenerate case is that

ij
z Xkt = Zv’“x’“+m1n—, Vi€l (30)
jer ¢t

kel kel
Theorem 4.4.2. A Neumann equilibrium state satisfying

equality (30) can be constructed using a lossless equilibrium model
for £ = %P,uk =1(k € I).

The fifth paragraph of Chapter 1V examines the effective
trajectories of the model Z.

Let be x; = (x}, ..., x*) the effective trajectory of this model.
This trajectory admits the characteristic L, = (£, ..., £}). Here ¢4 €
R™. We can assume that L, = (4, ..., ;), where £, = (£1,...,£") €
R¥

It is believed that for all £i > 0, where £! is the price of
the i —th product at time t. Let's define the functions Ut P9

UF($e41,%) = [fr41, BE - x] + €51 - FE(x). (31)
Recall that the number
Uk (8,44, %)
k() = L1220 peg 32
:ut [ft; X] ( )

is the growth rate of the total wealth of the k — th industry in the
state x at prices ¢;,,and ;.

Let there be equality

R(xfF)=1 forall k andt.

The equilibrium mechanism in the case of R(xf)=
I(k € Dt = 1,2, ..., will be called an equilibrium mechanism without
losses.

We will say that in the model Z it is possible to construct a
trajectory (x;)7=; using an equilibrium mechanism without losses if
at any moment t of time the vectors x¥ that make up the state x, of
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this trajectory fall into a conical shell spanned by vectors of the form
c*(k el.

Let x be the Neumann equilibrium vector.

Lemma 4.5.1. Let (x;);=,the trajectory of the model Z be

given, which has the following properties: the vectorx, is constructed
as part of the equilibrium in the model M = ({y}, U;(€14+1), A, V),
where V = (R%, ...,RY),y = (BF)¢—1(x¢~1), and the vector of
budgets A, = (A}, ..., A%) is chosen so u¥ = 1 that the growth rate is,
while the equilibrium prices ¢, = (43, ..., %) coincide with, and the
budgets AX are associated with the equalities AF = [£,,xK].
Then L, = (¢4, ..., ;) is the characteristic of the trajectory (x,).

Note 1. The characteristic (L;) (L = (£ ...,%;)) of the
trajectory (x;) is constructed inductively using the formula

.Bt+1 = Ct_+11(E + Cg)ﬁt' t= 11 2'
and £,,, » 0 and the vectors x¥ that make up the statex, of this
trajectory are determined by the formula
Al
xfF =m-c;", kel

Note 2. If the sequence (£;) that is inductively constructed for
the initial vector £ is not a characteristic of the trajectory (x;), then
for some t the equality does not hold:

n n

(BF)¢(x) = Z x,§"+1 = Z Aé+1ft+1 , t=1,2,.,

k=1 k=1
or the condition is violated
b1 >0, t=1,2,..

Theorem 4.5.1. Let the model Z have only one fund-forming

industry and numbers vi(i € I) such that
ol

n 1k . ki’
Yi=pC-c
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Then from any initial state x; = A1 x, (A = 0) it is impossible
to construct an effective trajectory (x;){Z; using an equilibrium
mechanism without losses.

The sixth paragraph of this chapter is devoted to the asymptotic
behavior of the trajectories of reproduction models.

When studying the formulated reproduction model, a

model with fixed budgets is used, which has the form
m={y}UN),
here y > 0 is some element of the cone R.", whereU =
Ui, ..., U™ are the utility functions U'defined by the
Ui(F,xY) = [F,Bix | + FiFi(xD),  (i=Tn).

In essence, Ul(i = 1,n ) the functions represent the cost of all
the funds hat the corresponding industry has, at prices f =
(FL,... F™).

The set of vectors (p, x1x™),..., forms an equilibrium state
in the model 9%, if the vectors x* are solutions to problems

U(f,x') >max (i=1n)
under conditions [p,x'] =4;,x' >0, and in addition, the

relations are satisfied
n

Zfi =y,p=0.

l
Let us introduce the function (£, x") = BV, U'(f,x") into
consideration. As is known, the equilibrium vector X =
(%1,..,%™) is a solution to the equation ¥(f,X) = 0, where
¥ =q,..., ) is a mapping into (R,™)™ itself having
coordinate functions
i) = 1,(f, x") — 7340 (f, 1)

at
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n

1<i<n-1, l[}n(X)szi—y.
1
We study the system ¥ (f,X) = 0 in order to find out how the
growth rate of the trajectory constructed using the model changes
The following lemma is true.

Lemma 4.6.1. The function ¥(f, x) is differentiable with

respect to X. In this case, Z—;};it coincides with the following

block matrix
/ ﬁ1(fl+Af1)A1_ﬁz(fz+AfZ)A2 0 0 0 \
[0 By (F? + Af2) Ay — Bo(f2 + Af%)A; .. 0 o |
\. o .. . . . . 0- ﬁ;l_l(}rn_ll_{_ Afn_lj--_ ’én(fln + .Afn)An' . )
I I I I I

where ¢; is the matrix of second partial derivatives A; =
V..29i(%") of the function ¢; calculated at the point %-.

Theorem 4.6.1. The rates of change in the states y* of
thei — th (i = 1,n — 1) industry are expressed linearly through
the coordinates of the vector y™.

Theorem 4.6.2. Let M! = max {;‘—i ;‘—lﬁ} If there are
1

n

sufficiently small ones A;> 0j = 1,n such that for all j = 1,n,
xt .
G

then for any sufficiently small ones .
J

< Ai the

following equality is true

i a?z%n n . _
yk_ i yk <gi (L_Zln_l lk_lln)'
12%i

Consequence. Under the conditions of the theorem, the
signs of the coordinates y‘a < i <n —1 of the vectors y" at
coincide with the signs of the coordinates of the vector y. The
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coordinates of the vector have signs opposite to the signs of the
corresponding coordinates of other vectors.

Lemma 4.6.7. Given a matrix C = (Cij):lj=1 such that

(3 —n)x?
- ,l :]
C:: = X1X7
Y) xx o
, L+,
X1X7

where x, = (x;x5,....,x1X,) IS a vector with positive
coordinates. Then for x; non-negative matrix A = C + ul

2
where = (n — 3) max Al and  vector  x, =
=1,n X1X2
(%125, ... .,xlxz) the mequallty holds
Axg < Exg.

Lemma 4.6.8. Whenn>3 for1<i<n is a fair
estimate

”C-_l” < Ei + Ui

n-— 2)|%ia§2|
where
PN\ 2 n
xl
—(n—3)max( k)l, =ma_z
k=1n x1x2 k=1 =

here c‘z,i(j are the elements of matrices A* constructed similarly
to the matrix A from Lemma 4.6.7.

Theorem 4.6.4. For there is an estimate y* (k = 1,n)
T2 1

Iy Il < ——— KB, |55
(q)p 12)
=g[k(k—1)+(n—k)(1+n_k)]'

Chapter V examines the model Z?2, which is a special case of
the model Z studied in previous chapters. A two-sector model Z? of
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the economy is considered, the first sector of which produces means
of production, the second - consumer goods. The equilibrium
mechanism for constructing trajectories is studied in relation to the
model. It turns out under what conditions equilibrium mechanisms,
determined by Leontief production functions, generate effective
trajectories.

The first paragraph of Chapter V provides a description of the
model Z2. The vector X, = (X, X?) € (R2)? is the state of the
model; here X} = (K}, L}) € R%, K} — fixed assets, L}, i(i = 1,2) -
labor force in the i —th sector. The production activity of the i-th
sector at the moment t is described using the production function
Ff: R? - R, and safety coefficients0 <v! < 1(i =1,2). The
wage rate (specific consumption) w, > 0 is considered to be known,
coinciding in the first and second sector.

The transition from state X, = (K}, L}, K?, L?) to state X,,, =
(KL, LY, K2, L2.,) is carried out using a system of inequalities

Kt1+1 + Kt2+1 < v% 'Ktl + vtz 'Ktz + Ftl(Ktl'L%):
(Ut+1.(L%+1 + .L%+1) < FZ(KZ, LD,
Kt>0, LL>0, (i=1,2),
where
o kY LY
il 70 — min [ = L -
Ft (KtlLt) = min <Cé’]’ Ctj’i> ) (1'1] - 1; 2);
cl'>0, (i,j=12).
Itis clear that the model Z? coincides with the model Z forn =
2 and matrices B} having the form

B,fL:(%f 8)(1':1,2).
When studying the model Z2, the simplest superlinear
mapping a of the form is used

a(K,L) =
= {(K’, L’)|K’ >0,L'> 0,K + wlL < vK + min (%,CL—Z),(K,L > 0)},
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where ¢! > 0,c? > 0.

The Neumann-Gale model Z, defined by the mapping a, will
be written in the form Z = (v, w, ¢, ¢?).

Consider the function

1
fop =min (&, 5), >0

and enter the number

g = c
C2
Occurs
Lemma5.1.1. Let
vn + f(n)
gm) = Tt (n > 0),
where v,w are some constants. Then, if w- v <— then the

c2

function g reaches a maximum on the interval (0,+x), and at a
single pointn = B. Ifw-v > C% then the function g strictly increases

on this interval. In the case, w-v = ciz the function g reaches a
maximum on the interval (0,+), at all points 7 = g, and
%gQM)=v
Proposition 5.1.1. Let's consider the model Z = (w, ¢!, c?,v).
Let the point X = (K, L) be that
. (K L = . (K L
v-K+m1n(C—1,C—2) _ v-K+m1n(;,c—2)

max — =
K=0, L=0 K+w-L K+w-L
K+w:L#0

and K+w-L=1. Let's put it p=(1,w). Then the triple
(a(Z),%,p) forms the equilibrium state of the model (w, v, c*, c?),
and

1 2

c c

1.if wv<ciz,thenl?= L=

cl+wc?’ cl+wc?
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| SR
(9}

2. ifa)vzl then
3|fa)v> thenK—lL—O

The second paragraph of the fifth Chapter is devoted to the
study of the stationary case of the model Z?2, described in §5.1: v} =
viw, = w,c’ =cl,t=0,1,.., forall (i,j = 1,2). In this case, the
model Z? turns into a Neumann-GaIe model Z2, which we denote
by. It is determined by the mapping

a(Ky, Ly, Ky, Ly) = {(K{, LY, K3, L) 0 < K + K3 <

< v'K, +v?K K Ly 33
v K; + v°K, + min o) (33)
1 1 KZ LZ .
0 <w(l;+L3) < mm(clz'czz) K;=>0, L; =0, (i+# 1,2)}.
Let us introduce models Z,(b), Z,(b) for some b > 0, defined
respectively by sets

1 11 .21 2 1 421 22
(v, bw,c't, c*t), (v,bw,bc 5 ) (34)

and numbers
pL=< gz =<2 (35)
6‘21 ’ C22'
To each of the sets (34) we associate the numbers «;(b),7* by
Lemma5.1.1

D ) = 1+ victt
=B @ T 11 4 pc??
and
_ b + v?c'?
z = ﬁzl aZ(b) = Clz + bwczz .
Lemma5.2.1. Let
1 1 2 36
17 - U < T’ ﬁ * ﬁ . ( )

Then the equation is where b =V(b)
c1? + bwc??
V(b) = (1 + UlCll)m — pv?cl? ’
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has only one positive solution b. In this case, the relation b < V(b)is
equivalent to inequality 0 < b < b.
Proposition 5.2.1. Let the conditions g > 2 of Lemma 5.2.1

be satisfied and the sequence b, satisfies the equalities by, =
V(b)(t=0,1,2,..) and b, > 0. Then b, —» b, and if b, < b,
then b, increases, if b, > b, then b, decreases.

Theorem 5.2.1. Let wv? < Ci

22!

conditions (33) be satisfied and

the number b defined as in Lemma 5.2.1. The number a = a;(b) =
az(B) is then the model's Z, Neumann growth rate; the functional
p=(1,b-w,1,bw) is Neumann equilibrium prices; the Neumann

equilibrium vector x = (K1, L', K?, L?) is defined ratios:

Kop, C_p L (= ov) e
Il ’ 12 12 b 2
where, 81, p? are defined by formula (35).

Let us describe, in relation to the model Z,, the equilibrium
mechanism for constructing model Z trajectories, discussed in §3.1.
Let the vector of prices? = (#1,¢%),¢1 > 0,¢2>0 be given.
Without loss of generality, we believe that it will be convenient for
us to write the price of funds #2 in the form £2 = bw, thus the price
vector ¢ has the form £ = (1, bw), where £ > 0 and bis the price of a
consumption unit. Consider the expected total wealth of divisions at
these prices and resource vector x = (K, L):

K L
Ul(a?,x)=v1K+min( ),

cl1 ! c21

) ) _ K L
U“({,x) =v K+m1n<ﬁ,67).
Further, Ut and U? act as functions of the utility of the units.

Let be the vector y = (K, L) of distributed resources; 1,12 — given
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department budgets. Let us consider an equilibrium model M with
fixed budgets, determined by the quantities (K, L).

Let's put
K C11
p=0@"0"), B=7 B =7,
11
,82 — C_ ul = 1 u? = b
C22 ’ 171(:.21 ’ U2C22 '

Recall that a set (p, x1, x2) is an equilibrium state (see §1.5) in

the model M, if
xl+xt=y

and the vector x* is the solution to the problem

U'(¢,x) > max giventhat, x = 0,[p,x'] < 2%, (i = 1,2).

Proposition 5.2.3. Let p = (p!, p?) be some prices. Then

1) if p* = 0,p% > 0, then the equilibrium state (p, x1, x?) does
not exist;

2)if p? = O p! > 0, then the set (p, x1, x2), where

Al 1
—_ Al AZ , 2 0’ 1 ( >
p! =7 ,/:( ), P x e
5 /12 1
X ﬁz
(here B, B, 2, defined above) is an equilibrium state if and only if
u>0 and ﬁzﬁlzﬁz.
Proposition 5.2.4. Let u? < — < ul(p! >0, p? > 0) where

the numbers, ut,u? B,B, %, are defined above. Then the
set (p, x1, x2) is an equilibrium state in the model M if and only if

ll /12
xt = DB T p2 =11, «x? =E(1, 0),
2 1 22 B
1 _ 2 [y __ "
P=G-pr P L(A 3 —ﬁ1>'
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2)B>p 9:1(B) <pu <9, (B).

Here

1 2 1 1
191(,8):5 +u B +u

- YB)=—7%——1.
B —B* ? B —B*
2
Proposition 5.2.5. Let u® < % < u? (p' > 0,p? > 0), where

numbers ul,u?, g1, B2, are defined above be satisfied and

K C11
p=(p11p2)1 ﬁ=Z; ﬁ1=ﬁ'
z_C11 1 _ 1 2 _ b

B 22 u ~ plcet’ u T p2c22

Then the set if (p,x1,x?) is an equilibrium state in the model
M if and only if

1 Al 2 AZ 2
1) «x =?(1,0); X =m(ﬁ'1).

1 Al 2_1<)12_’11'ﬁ2>
- P T\ TE-R)

2) B> PB%  93(B) < u<94(B).

Here
_ p-p? _ B-p?
193(ﬂ) - m ) 194(,8) = m

Proposition 5.2.6. Let (p1 > Oz—j < min(ut,u?),p? > 0),

where the parameters ul,u?, B, B? are satisfied. Then the set

(p, x1, x?) is an equilibrium state in the model M if and only if
1 2

A A
N el R

p1=l< /11 _ /12 ) p2=_</12’31 _Al.ﬁ)
L\B—-p* p*—p L\B*—p B—p*
and one of two conditions is met:

9s(B) <u<9s(B) by B*<p<p,
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or
96(B) < <9s(B) by B'<pB<p?

where
_B—pB* B+ min(u!,u?)
Us(B) = BL— g "32 + min(ut,u?)’
B—B> B
96(B) = BL—B E

Proposition 52.7. Let p?=0, the parameters
B, B, B2, ut, u?, have the form as above. Then the set (p, x*, x?) isa
semi-equilibrium state if and only if

pt =ﬁ_£ At +2%), p*=0,
AL AL
x!'=(K4L1Y): K'l=—, L'> :
P pl- B
A2 A2
xzz(KZ‘LZ): KZ:F: L2>p1'ﬁ2'

and one of the following conditions is met:

u>0 by p<min(B",p?);

pw=9(B) by B*<pB<p

u<9(B) by B'<pB<p?

where
ll _ P2 1
=k LB
Theorem 5.2.3. The model M can have half-equilibria only of

the type E', E? E3 E* E®, and the half-equilibrium E? is realized if
and only

f < min(utl,u?), u>0,
or
,3 p* B!
/3 -8 B

B* < B < B,
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or

ﬁz B B
t<p<p? us< —
where 8 = %
half-equilibrium E2 is realized if and only if
_ 1+ 2 1+ 1
pop, L cu< T
B—B B—-B

where § = %[E < L;
half-equilibrium E3 is realized if and only if
5 B - B? ﬁ p?
2
B> mraE<t<gra
where § = %[E < L;

half-equilibrium E# is realized if and only if
B> <B<p,
f—B* B+ min(u, ﬁ) B—p* B!
gl —pf B?+ min(ul,u ) <ﬁl—ﬁ.,ﬁ

or
B < B < B
p*-B B B*>—B B +min(u',u?)
E—ﬁl [32 <u< 5_31 '[32 + min(ul,uz)’
WMmﬁz%ESL
half-equilibrium ESis realized if and only if , 8 > 0u > 0
where

_fK
'B_f'

Fair
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Theorem 5.2.4. The model M can only have half-equilibria of

the type E! E2 E3 E* and E!= (p,x!,x2). In this case, half-
equilibrium, where

x! = /11( 311) x? = 2—?(1,%>,

p1=ﬁ—L A +2%), p*=0

is realized if and only if

B=B'=p% u>0,

where B =§
half-equilibrium £2 = (p, x%, x2) where
/11 2
1 = 1F1 ) 2 === 110 )
x Plﬁl:" 2 BH1) jf pl( )
p1=iL2—'B p2=£</11—,./12—ﬁ1>
% (8-8") R\ f-p
is realized if and only if
_ 1 2 1 1
Fop, XL, BrY
) B —B* B —B*
where f = %f(’ < K;
half-equilibrium E3 = (p, x*, x2), where
ﬂ.l AZ
1="-(1,0), x? 2,1
x p1(~) X P15 + p2 (B% 1),
i MR . B (AZ Ap? )
% (B-8?) K\ f-p?
is realized if and only if
B - B> ﬁ B?

:> 2, —< —’
F=>F p?+uz” " T pZ+ul

o1



where § =§7T < K;

half-equilibrium E*4 = (p, x1, x2) where
At 22
1 1 2 2
x _—plﬁl+p2('g'1)' x _—p1ﬁ2+p2(’8'1)'

pl_é< Al _ AZ ) p2_£:</12'31_/11’82>
K\p-p> pr—p/ K\p1—§ p-p

is realized if and only if

B2 < B <p,
f-p f+min@uw) _F-p B
51_3: B? + min(ul,u?) ~ ﬁ1_ﬁ: g%’
If
Br<B<p?
B2-B B _ _B-p> B+ min@lu?)
5_31 B— SH= Bl — ﬁ [32+m1n(u1 u?)’

where § = %f( <X.

Effective trajectories of the model Z2 are discussed in the third
paragraph of Chapter V.

Let's consider a trajectory (x;)i=,whose vectors x; =
(KL LLKZ, 1D(KE>0, L >0, i =1,2)are strictly  positive.
Recall that a trajectory (x;){=, is optimal (effective) if it admits the
characteristic (#,) .

Let the trajectory (x,)72, admit the characteristic (#,). Then
there are numbers b} > 0, b? > 0 such that

ft—(bt: bt' bt: b )

Let, £2 = (b}, b?), 2, = (#A,{’A) i.e. product prices do not
depend on the division where they are considered. Let us assume that
b} > 0 for all t and write the vector £2 in the form

‘B? = bity,
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e = (1, biw,). (37)
Let's put

K L
Ut1(€t+1) X) = Uth + min <T'?> ,
Gt Gt

K L
Utz(’gt_;,_l, x) = thK + bt+1 min (T,?) )
Ct™ Ct

where céj >0(,j=1,2; t=0,1,2,...) are the given numbers.

Theorem 5.3.1. Let be the trajectory (x;)i=, of the model
Z? admitting the characteristic (#,). Let us assume that, K/ >
0,L. > 0(i = 1,2) and the numbers b , are defined by equality (34).
Then

bii1 = Vi(by).
Lemma 5.3.2. If for everyonet = 0,1, 2, ...
1

11’
Ct

Be > Bt
d? < c, = const,

Theorem 5.3.2. Let assumptions (37) and the conditions of
Lemma 5.3.2 be satisfied. Then the sequence{b.} converges to
b where b is defined in Lemma 5.2.1.

The following paragraphs discuss the same type of
reproduction model as in previous chapters, but with arbitrary
production functions. It is shown that in the two-sector model there
are prices different from the Neumann ones at which a balanced
growth of divisions is possible. A description of the Neumann face in
the case of non-degeneracy is also given.

The fourth paragraph of Chapter V provides a description of
the two-sector model of economic dynamics. The first sector
produces means of production, the second sector produces consumer
goods.

The two-sector model Z is specified using the production

mapping a(x):
a(Ky, Ly, Ky, Ly) = {(Ki; Ly, K, L2)|K1 < v Ky + Fi(Ky, L),

vi—vl<
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K, < v,K, + Fi (K, L)Duy, uy +uy <1, Ly < F(Ky, Ly)vy,
Ly < F(Ko, Ly)v,,  wyv; + wypu, < 1.

It is assumed that the production function is given on a cone R?2
and is non-negative and superlinear there. Besides, F;(K,0) =
F;(0,L) = 0. Under these assumptions, the mapping a(x)is
superlinear and, therefore, Z a Neumann-Gale model.

Let us introduce the notation

K
fip) =F® 1), (=12), n=1,

p=@" po, p*, p*?wy),
where pt(i = 1,2) is the price of a unit of funds in the first and
second sectors has the same meaning p*?(i = 1, 2)

When studying a two-sector model Z, we will need single-
product models Z; and Z,, which are specified by production
mappings a,(x) and a,, accordingly, defined on the cone R2 using
the formulas:

a, (K, Ly) = {(Ki,L)|0 < K; < viKy +uy, uy =0,

12

~ ~ ~ p
wy + @yl < Fi(Ky, Ly), @1 = it

1%

21
~ p
F; (K, Ly) = max <1' F) Fy (K, L1)} ;

ay (Ko, Ly) = {(K3 L)|0 < Ky < v,Ky +uy, u,
>0, up +@,L; < F,(K,, Ly),

p22

B p12 p22
Wy = sz; F5(K3, L,) = max <ﬁ'ﬁ> Fz(Kz'Lz)}-
Let us consider the models Z;(i =1,2), for @;v; <34,
where3; = lim (), fi(n) = F;(n,1). Itis easy to verify that the
n—-+oo

Neumann growth rates «;of these models are calculated by the
formula
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viK + F;(K,L) vin + f;(n)
a; = max = = max—
kL>0 K+ w;L n>0 1 +
Lemma 5.4.1. Let vector p = (p1?, pt wl, p?l, p*2w,) the
price vector a(x) be the production display of the model Z. Then the
relation is true for the x = (K, Ly, Ky, L,):
max[p,y] = p"'v K, + p*'v,K, + max(p'h, p*t) Fi(Ky, Ly) +

+ max(plzr pzz) FZ (KZ' LZ)

Proposition 5.4.1. Equality is fair
a = max(a;, ay)

where a, a; a, are the Neumann growth rates of the models
Z,Z1,Z,,  respectivel .

Theorem 5.4.1. Letx = (K;,L;,K,,L,) be the equilibrium
vector, p = (p%, pP2w,, P?L, p*2w,), (P >0, p?! > 0) be the
equilibrium prices, number @ > 0 be the Neumann growth rate K; +
wil; =10 =1,2), wv; < 8;,8; = nlj)rjlwﬁ(ﬁi)

Then

1) if a; > a,,p?? > 0, then the equilibrium vector of the
model Z has the form ¥ = (1,0, 0,0), and the vectorx; = (1,0) is
the equilibrium vector in the single-product model Z;.

2) if a, > ay,p'? > 0, then ¥ = (0,0,1,0), andx, = (1,0)
is the equilibrium vector in the model Z,.

3) if a = a; = a,, then the Neumann equilibrium vectorx =
(K, Ly, K>, Lz) is determined by the relations
Ko L _(a—v)n,

L i L, aw,
where 7; is the point at which the maximum in (35) is achieved.

In this case, there are Neumann prices of the form p =
(1,bwq,1,bw,), Where b is the solution to the equation a,(b) =
a,(b).

In the fifth section of Chapter V, non-degenerate Neumann
equilibrium is studied. Neumann equilibrium is characterized by the
fact that @, (p) = a,(p) where

(i=12), (38)
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al(p) = g(bl' C) )
aZ(p) = h(bZI d);
where by, b,, ¢, d, are defined in the first paragraph of Chapter V.
It would be interesting to consider such prices
p= (p11, p12w1, p21’ pZZwZ)(pll > 0' p21 > 0)
not necessarily Neumann ones, which a;(p) = a,(p). Let us find
out at what pricesp the equality a,(p) = a,(p) is valid. Let's
introduce new variables
3 p12 3 p22 3 p12
Ch—F» QZ—F' qs —E-
Let's look at the functions
q
B1(q) = g(by,c), rtAe by =gq;, c¢=max (l,q—1>;
3
B2(q) = h(b,,d), tae by =q, d=max(qs, q)
Let's put:
c= h(CI3),
where h(qz) = h(qz, g3)-
Theorem 5.5.1. Let w;v; < 8;(i = 1,2)
1) The set of points (q4,q3) represents the set of solutions to
the inequality
Bi(q1.q3) 2 ¢c.
2) If (g4, g3) satisfies the strict inequality

ﬁ1(CI1'C_I3) >c
then g, there are two values at which the conditions are met

B1(q1,q3) = B2(4q2,q3)
3) If (q4, g3) they satisfy the equality

B1(q1,93) = ¢, )
then g, = g5 there is only one solution — Neumann prices.

Comment. For each g3 equationgs

$2(q2,93) = B1(q1,93)

it makes sense to consider forg, such that 8,(q4,q3) = a = d(qs3) .
Since infd(qz) =v; <c, thenqyqs there are such, that
B1(q1,q93) <c. For these (qq,q3), there is no such thing
for g, which the equation has a solution.
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If B,(q1,95) = a = c, then g, there is a unique solution to the
equation. In this case, p = (p'%,p 2w, p?t,p*2w,) are the
Neumann prices, where q; = Z—i ,qy = p—z, qz = i—z and for
B1(q1,q93) = a > c, then g, there are two solutions to the equation
Based on the above, we find that there is no such function that would
express one of the vector g = (q4, g3, q3) coordinates in terms of the
other two, since it has two values.

The sixth paragraph of the fifth Chapter is devoted to Neumann
faces, i.e. we will be interested only in the non-degenerate case,
namely a; = a,

As is known, many

N, = KNH,,
where H, = {(x,y)|[p,y] = a[p,x]}, p are Neumann prices, is
called the Neumann edge of a given equilibrium state, where K is the
cone of the model Z. Let's construct a Neumann face N, for the
model Z. Let, x = (K;, L1, K5, L)p = (p1Y, p w4, p?L, pP2w,) =
(1, bw4, 1, bw,) be Neumann prices.
A-priory
Ny ={(x,y) € Z |[p,y] = alp, x]}.

Theorem 5.6.1. Let a = a; = a,,p = (1, bwy, 1, bw,), be

Neumann prices. Then the Neumann edge has the following form:
N, =
={Gy|x = (A&, L), wKs L)),V y€eax),A=0, u=>0}

The sixth Chapter examines models of the economic dynamics
of production and exchange of the Neumann type, defined on a
graph. The model is defined by a digraph, each vertex of which is
associated with some superlinear multivalued mapping that describes
the technological capabilities of some economic unit. The existence
of an arc from vertex to vertex means the possibility of transporting
products from one vertex to another. A dual model is calculated and
with its help the characteristics of optimal trajectories are found.
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The first paragraph explores a model of economic dynamics
that describes the time behavior of an economic system S consisting
of a finite number of production unitss;,i = 1,m. The case is
considered when transport costs are not taken into account. Each
production unit is specified by a Neumann-Gale model defined by a
superlinear set-valued mapping a;: R} - w(R}). Therefore, it is
assumed that the phase space is the same for all models. Exchange of
products is allowed between some of these production units. To
formally describe the model, we introduce the graph P(J,Q),
where P(J, Q) is a loop-free graph, J is a set of vertices, and Q is a
multivalued mapping J inJ. More precisely, Q(j) this is a set of
vertices k € J such that there is an arc from vertex j to vertex k and
Q~1(j) a set to vertex k € J. By an arc from vertex j to vertex kwe
mean an ordered. The presence of an arc means the possibility of
transportation from. The model deals with the same products as
models, but it is more convenient to distinguish between products
corresponding to different vertices of the graph.

In this regard, we will assume that the phase space of the
model coincides with the cone (RP)™. If X = (x4, ..., X;m) € (RD™,
then the element x; € R} is interpreted as a set of products available
at the production site i. The mappings Aand B, describing
production and exchange respectively, are defined as follows:

AX) ={YlY = Vi, oo V), Vi € a;i(x),i = 1,m},

B(Y) = ZlZ = (Zl,...,Zm),Zl' =Y + Z uﬁ - Z Uik »
jeQ(@) keQ~1(d)

uUZO, Z uikSyi .
keQ~1(®)
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Vector uy; describes products transported in an arc (j, i). It is
easy to verify that the mappings A and B are superlinear.

If M € R} x R} the Neumann-Gale model, then the dual
model M’ is defined as follows

M ={(f,9) € RY)" x RD|[f,x] = [g,y] forall(x,y) € M}.

Let us give a description of the model dual to S. For this
purpose, we describe the mappings A’ and B’ dual to A and B,
respectively. In what follows we will denote the cone (R})™ by K.
Then K* = ((R})™)*. We denote the elements of the cones
K and K* by capital letters, and the projections of these elements
onto the i- th factor by the corresponding lowercase letters with an
index i. Thus, if € Kthen X = (x4, ..., x,,,). We will denote
[F, X] the value of the functionality F € K* on the element X € K. In
other words

[F.X] = ) [fi ]

i
Proposition 6.1.1. Equality is fair

A'(F)={G €K*|g; € aj(f),i =1,m},F € K*
Lemma6.1.1. If H € K*,Z € B(Y), where

zp=y; + z Uj; — Z Uik,

jeQ keQ~1(@)
m
[H,Z] = Z[hi'%’] + Z Z [Ar — hi, ikl
i i=1keQ~1(i)

Proposition 6.1.3. Let H € B'(G),Z € B(Y) it be, and

Z_i::)_/i+ Z 'L_l,]l— Z ﬁik,i=1,m.
_Jee® keQ~1(®)
Equality [H,Z] = [G,Y ] occurs if and only if
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gi —hyyi — Z U | = 0,[g; — by, U] = 0, (i, k) € Q.
keQ~1(d)
Let us formulate the results obtained in the form of a theorem.
Theorem 6.1.1. In order for the price trajectory to be a

characteristic of the trajectory, it is necessary and sufficient for the

following conditions to be met:
g:(®) € ai(fi(t — 1)),
[fi(t = 1), x;(t = D] = [:(©), y:(D], i = 1,m,
a®f;(®),j € Q7D U (B[fi(t) — g:(®), 7 (t) —
Yreow T ®] =0,i =T,m,
[fi(®) — g: (@, T (] =0, (k) €Q,t=1T.

Theorem 6.1.2. Let the triple (a, X, F) be the equilibrium state
of the model S, and let the elements #; and g;, and functionals g,
be determined by relations

yi(x) € a;(x;), z Up <ypi=1m
keQ~1(i)
and

1
gl(t) € a;(fl)' l=1m, Ef) =< 9u ] € Q_l(l) U {l}:

respectively. Then

1 .
[gl _Eﬁ'xl:l = 0!" = 1lml

1
[gi _Efl’a]l] = 0’] € Q(l)’l' = 1'm’

[fuﬁ]l] = [f},ﬁ]l],] S Q(l),l = 1,m.
The following statements are true.
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Proposition 6.1.4. Let Q = (g, g% ....g™) € (RH)™

Then A*(Q) =.

Let wus introduce the following notation. Let H =
(hY,....h™) € (RH™. Let's put

q'(H) = Supieaj((¢/HTRY).

Here the supremum of vectors (c/)*h is calculated

coordinatewise (*-sign of matrix transposition). Let further
K(H) = (q"(H), ....q™(H)).

In the second paragraph of the sixth Chapter models of
reproduction and exchange on the graph are considered, taking into
account transport costs. The effective trajectories of such models are
studied. In this case, the simplest equilibrium mechanisms are used.

In we take into account the mapping B that describes the
exchange relation in the simulated system:

B(Y) =47 = (2%, ..,2™)|Z* = Z ik ik
jer-1(kx)
k =1.2,..,m; u” = 0infront of everyone (i,j) € T,

ul = yi, i=12,..,mq.
Jer(@)

Production capabilities of the entire system are given by the
mapping A defined on the cone (RP)™. If x = (x1,...,x™) € (RH)™,
then

A(x) = al(x?) x a?(x?) x ...x a™(x™),
in other words
A) ={y =" .. y)Iy' € a'(xt),i =1, m}
The functioning of the entire system comes down to
production and exchange. If production activity is considered first,
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and then exchange, then the functioning of the system is described by
composition a = BoA

a@ = || B, xe @™
YEA(x)
If exchange occurs first, and then production, then
composition b = AoB is considered

b= | 4@, yerpm
ZEB(y)
Under natural assumptions, an optimal trajectory in the sense F

of admitting the characteristic, then there exists such a sequence
Fo, Fll ey FT, What FT = F,
[F,Xo] = -+ = [Fr, Xr], [F:)?o] =2 [FT'XT]
for any T-steppertrajectories Xy, ..., Xr where F satisfy the condition.
The following statements are true.

Proposition 6.2.2. Let H = (hl,....h™) € (RH™it be
then B*(H)=K(H)+ (RH)™, in other words, B*(H) =
{Q=0(g" . g™Ig" =z q*(H), k =T,m},

[F,X7] = max[F, X;].

Proposition 6.23. Let ZeB(Y) where, Z=
(z4,7%,..,2™), Y = (34, y%, ..., y™) and the elements u/'(i,j €
G) are such that

y) = Z i 7= Z cligt,
I€G()) jeG1(k)

Let further, if Q € B*(H), where Q = (g1, g%, ...,g™), H =
(h, h?,...,h™). Then the equality [H,Z]= [Q,Y] is valid if and
only if

[qi _ (Cji)*hi,l_lﬁ] = Oql _ (Cji)*hi,ﬁji
forall (j,i) €G.
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Theorem 6.2.1. The sequence F,,F,...,Fy, where F, =
(fd, ..., fi™) is a characteristic of the trajectory X,, Xy, ..., Xy if and
only if
LA e(a) (qF)), t=12,..,T; i=T1Lm
2.[q'(F) — (c¥) f ull =0, (v(,i) eD).
Definition. The equilibrium state of the model (U, X) is the
set (Z, H), where Z = (21,22, ...,z™), H = (h%,h?,...,hA™) that
here z'the vector of resources, h'is the vector of prices, and z* is
ut(z)
[niz]

and there w/'(j,i € G are vectors with the property that
m

Z w't = x/, Z CliuJt = 71,
JjeG(®) jec—1()

In this case, the vector H = (h%, h?,...,h™) is related to
vectors u/! by relations of the type [¢/(H) — (¢/)) h,u/!] = 0,
where g’/ (H) is the vector defined by formula (4).

Let there be a graph (J, G) equipped with a matrix system
C’i(j,i € G), and eachi is associated with a vector of resources x‘and
a utility function U*’. Using the characteristic theorem, it is possible,
under certain assumptions, to prove the existence in the model (U, X)
of an equilibrium (Z, H), which has the additional property that the
u'(2)

[h%z]

a solution to the problem — max under the condition Z>0

value of the problem max coincides with either zero or one for

all i.

Let us assume that the vectors x' are strictly positive and
consider a one-step trajectory of the model Z; starting from point
X and maximizing the price vector Q on the set b(X); here, as
above, b = AoB, the mapping B is defined using the graph (J, G)
and matrices according to formula (1), and the mapping A is
defined using the mapping a' according to formula (2). Let the
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indicated trajectory have the form (X, Y). Then there is a vector Z
with the property that Z € B(X),Y € A(Z).
According to well-known theorems, thereF is a price vector
such that the pair (F, Q) is a characteristic of the trajectory (X, Y).
There H is a vector such that
FeB*(H),He A (Q) and [FX]=[HZ]=

[Q,Y].
It is clear that the pair [Z, H] is an equilibrium.
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MAIN RESULTS

- Characteristic prices have been found for some Neumann-
type models.

- For some trajectories with certain properties, a theorem on the
growth rate is proven and a description of effective trajectories is
given.

- The principle of optimality for maximizing consumption is
proposed and two ways of distributing labor are proposed.

- For trajectories with strict equilibria, a theorem on
asymptotics has been proven.

- The conditions for introducing new technologies have been
determined.

-For the Cobb-Douglas and CES production functions, the
dependence of the consumption function on the type of production
functions is determined.

- The dependence of the consumption function on the means of
production is determined.

-The conditions for maximizing some macro-indicators were
found.

- Trajectories were studied at a constant accumulation rate.

- A necessary and sufficient maximum condition for the utility
function is proved and superdifferentials are found.

- A necessary and sufficient condition for the existence of a
solution to the consumer problem has been proven.

- A necessary and sufficient condition for the existence of a
solution to the consumer problem in equilibrium without losses has
been proven.

- A necessary and sufficient condition for the existence of
equilibrium prices without losses has been proven.

- The connection between the Neumann equilibrium condition
and lossless equilibrium is determined.

- Conditions have been determined under which constructing
an effective trajectory from the starting point is impossible.
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- For the two-sector model, using the equilibrium mechanism,
the Neumann growth rate, equilibrium prices and equilibrium vectors
are found.

- Necessary and sufficient conditions for equilibrium in the
two-sector model have been proven.

- The types of equilibrium and semi-equilibrium for the two-
sector model are determined.

- Neumann faces were found for the non-degenerate case.

- Effective trajectories of models of economic dynamics of

production and exchange on graphs were constructed, taking

into account and without taking into account transport costs
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