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GENERAL CHARACTERISTICS OF THE WORK 
 

Rationale of the theme and development degree. İt is known 
that mathematical description of scattering of waves that 
harmonically depend on time leads to boundary value problem for 
the Helmholts equation 02 =+∆ uku , where ∆ is a Laplace operator, 
k is a wave  number and 0Im ≥k . As in many cases it is impossible 
to find exact solution of boundary value problems for Helmholts 
equation, there arises an interest to develop approximate methods for 
solving boundary value problem for Helmholts equation with 
theoretical foundation. One of the widely used methods for studying 
approximation solutions of exterior boundary value problems for 
Helmholts equation is their reduction to an integral equation. The 
main advantage of using the method of boundary integral equations 
for studying exterior boundary value problems is that such a system 
allows to reduce the problem stated for an unbounded domain to the 
problem for a smaller dimension bounded domain.  

Note that direct application of potential theory for deriving 
integral equations of exterior boundary value problem for Helmholts 
equation reduces to equations that have no a unique solution on eigen 
values of internal boundary value problems. However, searching the 
solutions of external boundary value problems in the form of 
combination of acoustic potentials of single and double layer and 
also using the Green formula for deriving integral equations of 
external boundary problems, the integral equations uniquely solvable 
for any value of the wave number and dependent on the operator  

( )( ) ( )
( )
( ) ( )∫ ∂

Φ∂
∂
∂

=
S

y
k dSy

yn
yx

xn
xT ρρ 

,2 ,  Sx∈ , 

were obtained, where S is a closed twice continuously differentiable 
surface in 3R , ( )xn is a unit external normal at the point  Sx∈ , 
while ( )yxk ,Φ is a fundamental solution of the Helmholts equation, 
i.e. 
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A counterexample structured by Liapunov1 shows that for a 
double layer potential with continuous density, a derivative, 
generally speaking, does not exist, i.e. the operator T  was not 
determined in the space ( )SC  of all continuous functions on S  with 
the norm ( )xff

Sx∈∞
= max . However, in D.Kolton and R.Kress book2 

it was proved that the operator T boundedly acts in the Holder space 
and a formula for calculating the derivative of a double layer acoustic 
potential was given by means of surface gradient. Furthermore, in 
this book it was showed that if in 0Im >k , the operator 

( ) ( )SCST →Ν:  is invertible and the invertible operator 1−T  is given 
by the relation   

( ) ( ) 111 ~~ −−− +−−= KIKILT , 
where  

( )( ) ∫ ∈Φ=
S

yk SxdSyyxxL ,,)(),(2 ρρ  

( )( ) ∫ ∈
∂
Φ∂

=
S

y
k SxdSy

xn
yxxK ,,)(

)(
),(2~ ρρ   

−I is a operator in the space ( )SC  and ( )SΝ  denotes a space of all 
continuous functions ϕ , whose double layer potential with density 
ϕ  has continuous normal derivatives on both sides of the surface S . 
It should be indicated that the given formula in D.Kolton and 
R.Kress book for calculating the derivative of a double layer acoustic 
potential is not very practical. Furthermore, it should be noted that a 
practice cubic formula for calculating normal derivative of double 
                                                 
1 Гюнтер, Н.М. Теория потенциала и ее применение к основным задачам ма- 
тематической физики / Н.М. Гюнтер. – Москва: Гостехиздат, – 1953. –  415с. 
2 Колтон, Д. Методы интегральных уравнений в теории рассеяния / Д. Кол- 
тон, Р. Кресс. – Москва: Мир, – 1987. – 311с. 
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layer acoustic potential was not constructed yet. For example, 
A.Yu.Anfinogenov, I.K.Lifanov and P.L.Lifanov3 a cubic formula 
was constructed for a normal derivative of a double layer acoustic 
potential in a sphere. However, the constructed cubic formula in this 
work is not practical in the sense that the coefficients of this cubic 
formula are singular integrals.  
 Furthermore, it is known that one of the methods for solving 
hypersingular integral equations of exterior boundary value problem 
for Helmholt equations is regularization of these equations by means 
of the inverse operator 1−T . As can be seen, in spite of inevitability 

of operators ( ) 1~ −
+ KI and ( ) 1~ −

− KI obvious form of inverse operators 
KI ~+  and KI ~− , are not known, consequently the obvious form of 

the inverse operator 1−T  is unknown. Because of these reasons, the 
approximate solution of some classes of integral equations of 
boundary value problem for Helmholts equation was not studied. 
Consequently, development of approximate methods for solving 
integral equations of boundary value problems for Helmholts 
equations for any value of the wave number and its theoretical 
foundation is very urgent. 

Goal and tasks of the research. The main goal and tasks of the 
dissertation work is to derive a practical formula for calculating the 
derivative of a double layer acoustic potential, to construct a cubic 
formula for the normal derivative of a double layer acoustic potential 
and to study the approximate solution of some classes of integral 
equations of boundary value problems for Helmholts equation for 
any value of the wave number 0Im ≥k . 

Investigation methods. The methods of potential theory, theory 
of singular and hypersingular integral equations, theory of operators, 
functional analysis and general theory of approximate methods are 

                                                 
3 Анфиногенов, А. Ю., Лифанов, И. К., Лифанов, П. И. О некоторых гипер- 
сингулярных одномерных и  двумерных интегральных уравнениях // – 
Москва: Математический сборник,– 2001. т.192, №8, – с. 3–46. 
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used.  
The basic aspects to be defended. The following main 

statements are defended: 
1. To derive a practical formula for calculating the derivative of a 

double layer acoustic potential. 
2. To study some properties of operators generated by the direct 

value of the derivative of a simple layer acoustic potential and the 
derivative of a double layer acoustic potential in generalized Holder 
spaces. 

3. To construct cubic formulas for the direct value of the 
derivative of a simple layer acoustic potential and for the normal 
derivative of a double layer. 

4. To study approximate solution of a class of weakly singular 
surface integral equations of exterior boundary value problems for 
Helmholts equation by projective methods. 

5. To research approximate solution of a class of hypersingular 
surface integral equations of first and second kind by projective 
methods. 

Scientific novelty of the research. In the dissertation work the 
following main results were obtained:  

1. The boundedness of the operator generated by the direct value 
of the derivative of a simple layer acoustic potential in generalized 
Holder classes, was proved. 

2. Practical formula for calculating the derivative of a double 
layer acoustic potential was given and boundedness of the operator 
generated by the derivative of a double layer acoustic potential in 
generalized Holder classes, was proved. 

3. A cubic formula for a class of weakly singular surface 
integrals was constructed. 

4. A method for constructing a cubic formula for a surface 
singular integral was given and based on this method, a cubic 
formula for the direct value of the derivative of a simple layer 
acoustic potential and for the normal derivative of a double layer 
acoustic layer is constructed. 
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5. Justification for the collocation method for a class of weakly 
singular surface integral equations of exterior boundary value 
problems for Helmholts equation is given. 

6. Justification of the collocation method for the system of 
surface integral equation of a boundary conjugation problem for 
Helmholts equation is given. 

7. The approximation method at the support points of the 
operator inverse to the operator generated by the normal derivative of 
a double layer acoustic potential is given. Based on this method, the 
approximate solution of a class of hypersingular surface integral 
equations of first and second kind, is studied.   

Theoretical and practical value of the study. The work is 
mainly of theoretical character. But the results obtained in the work 
may be used for numerical solutions in many practical problems of 
natural science (for example, in theory of diffraction of 
electromagnetic and acoustic waves). 

Approbation and application. The results of the dissertation 
work were reported at the seminar of the department "Applied 
mathematics" of Azerbaijan State Oil Academy (head: corr.-member 
of NASA, prof. K.R.Aida-zadeh), at the seminar of the department 
"General and applied mathematics" of Azerbaijan State University 
Oil and Industry (head: prof. A.R.Aliyev), at the seminar of the 
department "Mathematical analysis" of Baku State University (head: 
prof. S.S.Mirzoyev), at the seminar of the department "Mathematical  
physics equations" of Baku State University (head: acad. Y.A. 
Mamedov), at the seminar of the section "Mathematical analysis" of 
IMM of NASA (head: corr.-member of NASA, prof. V.S.Guliyev), 
at the seminar of the section "Nonharmonic analysis" of IMM of 
NASA (head: corr.-member of NASA, prof. B.T.Bilalov),  at the 
seminar of the section "Functional analysis" of IMM of NASA (head: 
prof. H.I.Aslanov), at the seminar of the section "Function theory" of 
IMM of NASA (head: doct. math. eci. V.E.Ismailov), at the institute 
seminar of IMM of NASA (head: corr.-member of NASA, prof. 
M.J.Mardanov),  and at the conference dedicated to 70-th 
anniversary of prof. Y.J.Mamedov (Baku, 2001), at the international 
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conference "Actual problems of mathematics and mechanics" 
dedicated to 90-th anniversary H.A.Aliyev (Baku, 2013), at the 
international conference "Function spaces and function 
approximation theory" dedicated to the 100 years of acad. S.M. 
Nikolsky (Moscow, 2015), at the international conference 
"Mathematical analysis, differential equations and their applications" 
(MADEA-7, Baku, 2015), at the international scientific seminar 
"Nonharmonic analysis and differential operators" (Baku, 2016),  at 
the conference "Functional analysis and their applications " dedicated 
to 100 years of prof. A.Sh.Habibzadeh (Baku, 2016), at the 
international conference "Weight estimates of differential and 
integral operators and their application" dedicated to 70-th jubilee of 
prof. R.Oynarov (Astana, 2017), at the international conference 
"Operators, functions, and systems of mathematical physics" 
dedicated to 70 years of prof. H.Isaxanli (Baku, 2018). 

Personal contribution of the author is in formulation of the 
goal and choice of research direction. Furthermore, all conclusions 
and the obtained results and research methods belong personally to 
the author. 

Publications of the author. Publications in editions recommen- 
ded by HAC under President of the Republic of Azerbaijan  – 23, 
conference materials – 1, abstracts of papers – 7. 

Institution where the dissertation work was executed. The 
work was performed at the department of "General and Applied 
Mathematics" of Azerbaijan State Oil and Industry University. 

Structure and volume of the dissertation (in signs, indicating 
the volume of each structural subsection separately) General 
volume of the dissertation work consists of – 409482 signs (title page 
– 326 signs, table of contents – 3656 signs, introduction – 69200  
signs, chapter I – 137400 signs, chapter II – 45300 signs, chapter III– 
102400 signs, chapter IV – 51200 signs). Then list of references 155 
names. 
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THE MAIN CONTENT OF THE DISSERTATION 
 

The dissertation consists of introduction, four chapters, list of 
references. 

In the introduction rationale of the research work is justified, 
degree of its elaboration is shown, goal and takes of the research are 
formulated, scientific novelty is reduced, theoretical and practical 
value is noted, information on approbation of the work is given.  

In chapter I a more practical formula is developed for calculating 
the derivative of a double layer acoustic potential and under weaker 
conditions the boundedness of operator generated by the direct value 
of the derivative of a simple layer acoustic layer and of the derivative 
of a double layer acoustic potential in the generalized Holder spaces 
are proved. The main results of this chapter were published in the 
author's works [5, 6, 7, 9, 11, 16, 24]. 

let us consider the direct value  

      
( )∫ ∈=Φ=

S
ykx SxxxxdSyyxgradxV ,,,,)(),()( 321ρ

           
(1) 

of the derivative of a simple layer acoustic potential, where 3RS ⊂  
is Lyapunov, surface, while −)(yρ  is a continuous function on S .                   

For a function )(xϕ  continuous on the surface S  we introduce 
a continuity modulus of the form   

0,),(sup),( >=
≥

δ
τ
τϕωδδϕω

δτ
, 

where   .)()(max),(
,

yx
Syx

yx
ϕϕτϕω

τ
−=

∈
≤−

 

Theorem 1.  Let  −S be a Lyapunov surface and   

∫ +∞<
Sdiam

dt
t

t
0

),(ρω
. 

Then integral (1) exists in the sense of the Cauchy principal value, 
and 
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( )








+≤ ∫∞

∈

Sdiam

Sx
dt

t
tMxV

0

,)(sup ρωρ .                                                                                              

Here and in sequel, by M  we will denote positive constants 
different in various spaces. 

Theorem 2.  Let S  be a Lyapunov surface with the index 
10 ≤<α   and    

∫ +∞<
Sdiam

dt
t

t
0

),(ρω
. 

Then the following estimations are valid: 

( ) ( ) ( ) ( )








+++≤ ∫∫

diamS

h

h

dt
t

thdt
t

thhMhV 2
0

,, ,, ρωρω
ρωω α

ρ     

for 10 <<α , 

( ) ( ) ( ) ( )








+++≤ ∫∫

diamS

h

h

dt
t

thdt
t

thhhMhV 2
0

,, ,ln, ρωρωρωω ρ     

for 1=α , 
where ρM   is a positive constant dependent only on ,S k  and .ρ  

We introduce the following classes of functions determined on  
( ]diamS,0 : 

( ) ( ){ }↓=↑=
→

δδϕδϕϕϕχ
δ

/,0lim,:
0

,    

( ) ( )








+∞<∈= ∫
diamS

dt
t
tSJ

0
0 : ϕχϕ  

 and consider the function 

( )
( ) ( ) ( )

( ) ( ) ( )










=+++

<<+++
=

∫∫

∫∫
diamS

h

h

diamS

h

h

ifdt
t

thdt
t
thhh

ifdt
t

thdt
t
thh

Z
.1, ln

,10, 

2
0

2
0

αϕϕϕ

αϕϕϕ
ϕ

α

 

Let χϕ ∈  and by ( )ϕH  denote a linear space of all functions ρ  
continuous on S  and satisfying the condition 
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( ) ( ) ( )yxCyx −≤− ϕρρ ρ ,  Syx ∈, , 
where ρC  is a positive constant dependent on S  and ρ , but not on 
x  and y . It is known that the space ( )ϕH  is a Banach space with the 
norm 

( ) ( ) ( ) ( )
( )yx

yx
x

yx
SyxSx

H −
−

+=
≠
∈∈ ϕ

ρρ
ρρ

ϕ
,

supsup . 

Theorem 3. Let ( )SJ 0∈ϕ , then the operator ( )( ) =xAρ  
),(xV= ,Sx∈  boundedly acts from ( )ϕH  to ( )( )ϕZH , and 

( )( ) ( )ϕϕ
ρ

HZH
MV ≤ . 

Now we consider a double layer acoustic potential 

∫ ∈
∂
Φ∂

=
S

y
k

k SxdSy
yn

yxxW ,,)(
)(

),()(, ρρ   

where 3RS ⊂ is Lyapunov's surface, while, а −)(yρ is a continuous 
function on S .                   

Theorem 4. Let S  be a Lyapunov surface, )(xρ  be a 
continuously differentiable function on S  and  

∫ +∞<
Sdiam

dt
t

tgrad
0

),( ρω
. 

Then the double layer acoustic potential )(, xWk ρ  
has a derivative 

on S  and 
( )

−







∂

Φ−Φ∂
= ∫ y

S

k
xk dSy

yn
yxyxgradxWgrad )(

)(
),(),()( 0

, ρρ 
 

    

( )( ) ( ) +−
−

−−
− ∫ y

S

dSxy
yx

xyynxy )()()(,
4
3

5 ρρ
π



    
           ,,)()()(

4
1

3 SxdSyn
yx

xy
S

y ∈
−

−
+ ∫

ρρ
π

                   
 
(2) 

and  
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( ) ( )








++≤ ∫ ∞∞

d

k graddt
t

tgradMxgradW
0

,
, ρρρω

ρ ,  Sx∈∀ , 

where 00 |),(),( =Φ=Φ kk yxyx  and the last integral in the equality 
(2) exists in the sense of the Cauchy principal value. 

Theorem 5. Let S  be a Lyapunov surface with the index 
10 ≤<α , )(xρ be a continuously differentiable function on S  and 

∫ +∞<
Sdiam

dt
t

tgrad
0

),( ρω . 

Then for 10 <<α  
( ) ≤hgradWk ,,ρω

 
( ) ( ) ( )









+++≤ ∫∫

diamS

h

h

dt
t

tgradhdt
t

tgradhgradhM 2
0

,, , ρωρωρωα
ρ , 

while for 1=α  
( )≤hgradWk ,,ρω

 
( ) ( ) ( )









+++≤ ∫∫

diamS

h

h

dt
t

tgradhdt
t

tgradhgradhhM 2
0

,, ,ln ρωρω
ρωρ

, 
where  ρM   is a positive constant dependent only on ,S k  and .ρ    

Let χϕ∈ . By ( )ϕ1H  we denote a linear space of all 
continuously differentiable functions ρ  on the surface S  and 
satisfying the condition 

( ) ( ) ( )yxCygradxgrad −≤− ϕρρ ρ ,  Syx ∈, , 
where ρC  is a positive constants dependent on S  and ρ , but not on 
x  and y . It is known that the space ( )ϕ1H  is a Banach space with 
the norm  

( ) ( ) ( ) ( ) ( )
( )yx

ygradxgrad
xgradx

yx
SyxSxSx

H −
−

++=
≠
∈∈∈ ϕ

ρρ
ρρρ

ϕ
,

supsupsup
1

. 
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Theorem 6.  Let −S be a Lyapunov surface, and ( )SJ 0∈ϕ . 
Then the operator ),(, xgradWA k ρρ =  ,Sx∈  boundedly acts from 

( )ϕ1H  to ( )( )ϕZH ,  

( )( ) ( )ϕϕρ ρ
1

, HZHk MgradW ≤ . 

Corollary 1.  Let S be a Lyapunov surface, and ( )SJ 0∈ϕ . Then 
the operator T  boundedly acts from ( )ϕ1H  to ( )( )ϕZH , and 

( )( ) ( )( ) ( )ϕϕ
ρρ

1HZH
MxT ≤ . 

 In chapter II a method for constructing a cubic formula for a 
surface singular integral is given and based on this method cubic 
formulas for the direct value of the derivative of a simple layer 
acoustic potential and for the normal derivative of a double layer 
acoustic potential are constructed. Furthermore, a cubic formula for a 
class of weakly singular surface integrals is constructed in this 
chapter. The main results of this chapter are in the papers [3, 4, 8, 12, 
13, 18]. 

Let S  be a Lyapunov surface. We divide S  into "regular" 

elementary parts 
N

l
lSS

1=
= . Under the "regular" elementary part we 

agree to understand the points set subjected to the following 
reguirements: 

(1) for any { }Nl ...,,2,1∈  the elementary part of lS  is closed and 

its set of internal points 
0

lS  with respect to S  is not empty, and 

ll mesSSmes =
0

 and for { },...,2,1 Nj∈  ,lj ≠  
Ο/=

00

jl SS  ; 
(2) for any { }Nl ...,,2,1∈  the elementary part lS  is a connected 

piece of the surface S  with a continuous boundary; 
(3) for any  { }Nl ...,,2,1∈  there exists the  so-called support point 

( ) ( ) ( ) ( )( ) lSlxlxlxlx ∈= 321 ,,  such that: 
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(3.1)  )(~)( NRNr ll    ( ( ) ( ) ( )
( ) 21~ C
NR
NrCNRNr

l

l
ll ≤≤⇔ , 

where 1C  and 2C   are positive constants independent of N ), where 
( ) ( )lxxNr

lSxl −=
∂∈

min  and ( ) ( )lxxNR
lSxl −=

∂∈
max ;  

(3.2) ( ) 2/dNRl ≤ , where −d is a radius of a standard sphere; 
(3.3) for any { }Nj ...,,2,1∈    ( ) ( )NrNr lj ~ . 
Obviously, ( ) ( )NRNr ~  and ( ) ( ) 0limlim ==

∞→∞→
NRNr

NN
, where 

( ) ( )NRNR l
Nl ,1

max
=

= , )(min)(
,1

NrNr lNl=
= . 

Let us consider a surface integral of the form 

,,)(),()( SxdSy
yx
yxKxB

S
yn ∈

−
= ∫ ρ                             (3) 

where 3RS ⊂ is a Lyapunov surface with the index ( ]1,0∈α , −n  is 
a natural number, ( )−yxK , is a continuous function on SS ×  and  
there exists a number ( )2,0∈λ  such that Syx ∈,  

                 ( ) λ−−≤ nyxMyxK , ,                                   (4) 
( )−xρ is a continuous function on S . Let 

( ) ( )( )
( ) ( )









≠
−

=

=
. for    ,

,     f0

jlmesS
jxlx

jxlxK

jlor

b
jn

jl  

Theorem 7. Let a function SS ×  continuous on ( )yxK ,  satisfy 
condition (4) and there exist a natural number m  such that 

Syyx ∈′′′∀ ,,  

( ) ( ) ,,,
1
∑
=

′′−′−′′−′≤′′−′
m

j

jjj yxyxyyMyxKyxK γβα         (5) 
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where ,10 ≤< jα
 

,0≥jβ  0≥jγ  и ,2−>++ njjj γβα
 mj ,1= .  

Then the expression 

                 ( )( ) ( )( )∑
≠
=

=
N

lj
j

jl
N jxblxB

1
ρ                             (6) 

at the points ( ) Nllx ,1, = , is a cubic formula for the integral  (3) 
continuous with density ρ  on S  and the following estimation be 
valid: 

( )( ) ( )( ) ( )( ) ( ) ( )( )[ ]NRNRNRMlxBlxB N

Nl
,lnmax

,1
ρωρ γ +≤−

∞=
, 

where { }n−++−= 2,2,min βηληγ , { } ,min
,1

ηγβαβ −++=
=

jjj
mj

 jmj
αη

,1
min
=

= .                               

Now we construct a cubic formula for the direct value of the 
derivative of a simple layer acoustic potential and for the normal 
derivative of a double layer acoustic potential. Let   

( ) ( ) ( )( )








≤−≤≤= +α1
1

,1| NRjxlxNjjPl , 

( ) ( ) ( )( )








>−≤≤= +α1
1

,1| NRjxlxNjjQl  

and ( ) ( ) ( )( )xVxVxVxV 321 ,,)( = ,  where 

( ) ( )3,2,1,)(
),(

)( =∈
∂
Φ∂

= ∫ mSxdSy
x

yx
xV y

S
m

k
m ρ . 

Theorem 8.  Let S  be a Lyapunov surface with the index 
10 ≤<α   and  βρ H∈ , 10 ≤< β . Then the expression 

( )( ) =lxV N
m

 
( ) ( ) ( ) ( )( ) ( ) ( )( )( )( ) ( ) ( )( )

( ) ( )∑
≠
=

×
−

−−−+−−
=

N

lj
j

mm

jxlx
jxlxjxlxikjxlxikjxlxki

1
34

exp1exp
π

 

( )( ) ( ) ( )
( ) ( )∑

∈ −

−
+×

lQj
jj

mm
j Smesx

jxlx
lxjxmesSjx )(

4 3 ρπ
ρ  
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at the points ( ) Nllx ,1, = , is a cubic formula for  ( )( )lxVm , and 

( )( ) ( )( ) ( )( ) ( )( ) 







+≤− ++

=

α
β

α
α

ρ
11

,1
max NRNRMlxVlxV N

mm
Nl

,  3,1=m , 

where ρM  is a positive constant dependent only on ,S k  and .ρ   
Note that by the method for constructing a cubic formula for the 

direct value of the derivative of a simple layer acoustic potential one 
can construct a cubic formula for other singular integrals along the 
Lyapunov surface as well.    

Theorem 9. Let S be a Lyapunov surface with the index 
10 ≤<α , −)(xρ be a continuously differentiable function on S  and 

∫ +∞<
Sdiam

dt
t

tgrad
0

),( ρω . 

 Then the expression  

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )( )

( )( ) ( )( ) −







∂

Φ−Φ∂
∂

∂
= ∑

≠
=

N

lj
j

j
kN mesSjx

jxn
jxlxjxlx

lxn
lxT

1

0 ,,2 ρρ   

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( )

( )( ) ( )( )( ) +−
−

−−
− ∑

≠
=

j

N

lj
j

mesSlxjx
jxlx

lxnlxjxjxnlxjx
1

5

,,
2
3 ρρ
π


 

( )( ) ( )( )( )
( ) ( )

( )( ) ( )( )( ) j
Qj

mesSlxjx
jxlx

jxnlxn

l

∑
∈

−
−

+ ρρ
π 3

,
2
1 

 

at the points ( ),lx Nl ,1= , is a cubic formula for  ( )( )xTρ , and the 
following estimations are valid: 

( ) ( )( ) ( ) ( )( ) ≤−
=

lxTlxT N

Nl
ρρ

,1
max

 

( )( ) ( )( )















++≤ ∫

+

+
∞∞

α
ρωρρ α

α
α

1
1

))((

0

1
),(NR

dt
t

tgradNRgradNRM    

for 10 <<α , 
( ) ( )( ) ( ) ( )( ) ≤−

=
lxTlxT N

Nl
ρρ

,1
max   
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( ) ( )( ) ( )
( )












++≤ ∫∞∞

NR

dt
t

tgradNRgradNRNRM
0

),(ln ρωρρ    

 for 1=α . 
Chapter III deals with justification of the collocation method for 

a class of weakly singular surface integral equations of exterior 
boundary value problems for Helmholts equation. Furthermore, a 
sequence convergent to the exact solution of initial boundary value 
problem is constructed and error estimation is given. The main 
results of this chapter are in the author's papers [1, 2, 3, 10, 14, 17, 
19, 20, 22, 25, 26, 29].  

let us consider the integral equation 
                 ,fB =+ ρρ                                        (7) 

where  

( )( ) SxdSy
yx
yxKxB

S
yn ∈

−
= ∫ ,)(),( ρρ , 

3RS ⊂ is a Lyapunov surface, n  is a natural numbers, ( )yxK ,   is a 
continuous function on SS ×  and satisfies the condition (4), f is a 
given continuous function on the surface S , and ( )xρ  is a desired 
continuous function on S .  

As earlier, we divide S  into “regular” elementary parts 


N

l
lSS

1=
=  and consider the matrix with the elements ( )N

jljl
N bB

1, =
=    

0=jlb   for jl = ; 
( ) ( )( )

( ) ( ) jnjl mesS
jxlx
jxlxKb

−
=

,   for jl ≠ . 

Let NC be a space of N –dimensional vectors ( )Τ= N
N

NNN zzzz ,...,, 21 , 

,Cz N
l ∈  ,,1 Nl =  with the norm N

l
Nl

N zz
,1

max
=

= , where the notation 

“ Τa ”  means transportation of the vector a . Using cubic formula (6), 
we substitute integral equation (7) by the system of algebraic 
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equations N
lz with respect to approximate values ( )( ) Nllx ,1, =ρ , 

that will be written in the form 
                     ( ) NNNN fzBI =+ ,                                     (8) 

 where −NI is a unit operator on the space NC , fpf NN = , while 
( ) −→ NN CSCp : is a linear bounded operator determined by the 

formula ( )( ) ( )( ) ( )( )( )Τ= Nxfxfxffp N ,...,2,1  and called a simple 
drift operator.  

Theorem 10. Let ( ) { }0=+ BIKer , the function ( )yxK ,  satisfy 
conditions (4) and (5) there exist a natural number   such that 

( ) ( ) SyxxyxyxxxMyxKyxK
j

cba jjj ∈′′′∀−′′−′′′−′≤′′−′ ∑
=

,,,,,
1



, 

where 0,0,10 ≥≥≤< jjj cba  and  ,1,2 =−>++ jncba jjj . 
Then equations (7) and (8) have unique solutions ( )SC∈*ρ  and 

NN Cz ∈* , respectively and  0** →− ρNN pz  for  ∞→N   with the 
estimation 

( )( ) ( ) ( )( )[ ]NRfNRNRfMpz NN ,ln** ωρ η +≤−
∞

, 

where { }c,min γη = , { }nbaac −++−= 2,2,min λ , { } acbab jjj
j

−++=
= ,1

min ,  

j
j

aa
,1

min
=

= . 

Let 3RD ⊂ be a bounded domain with a twice differentiable 
boundary S . In the mentioned monograph of  D.Kolton and R.Kress, 
it was proved that if the function ( )xu  has a normal derivative in the 
sense of uniform convergence, i.e. the limit   

( )
( ) ( ) ( )( )( )xnhxugradxn
xn
xu

h
h


 +=

∂
∂

>
→

,lim
0
0

,  Sx∈ , 

exists uniformly on S , then the solution of Helmholts equation u , 
satisfying the ray equations, may be represented as follows: 
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( ) ( ) ( )
( )

( )
( ) ( ) DRxdSyx
yn
yu

yn
yxyuxu

S
yk

k \,,, 3∈








Φ
∂
∂

−
∂
Φ∂

= ∫  .      (9) 

Using this representation in the work of Burton and Miller4 the 
Dirichlet exterior boundary value problem for Helmholts equation is 
reduced to the following second order integral equation uniquely 
solvable in the space ( )SC  for any value of the wave number 

0Im ≥k   

               ( )fKfiTfLiK −−=−+ ηρηρρ ~ ,                      (10) 
where 

( )( ) ( )
( ) ( )∫ ∂

Φ∂
=

S
y

k dSyf
yn

yxxKf 
,2 ,  Sx∈ , 

( )SNf ∈  is a given function, while 0≠η is an arbitrary real number 
and 0Re ≥kη . Note that the solution of equation (10) is a normal 
derivative in the sense of uniform convergence of the solution of the 
Dirichlet exterior boundary value problem for Helmholts equation on 
the surface S . This time the function  

( ) ( ) ( )
( ) ( ) ( ) DRxdSyxy
yn

yxyfxu
S

yk
k \,,, 3∈









Φ−
∂
Φ∂

= ∫ ρ , 

is the solution of the Dirichlet exterior boundary value problem for 
Helmholts equation. Furthermore. equation (10) has the advantage 
that its solution is the solution of the moments equation obtained first 
by Waterman5 for electromagnetic waves scattering. We write 
equation (10) in the form 

                 ( ) ( )( ) ( )( )xBfxAx =+ ρρ ,                             (11) 
where    

( )( ) ( )( ) ( )( )xLixKxA ρηρρ −= ~ ,  Sx∈ , 

                                                 
4 Burton, A.J., Miller, G.F. The application of integral equation methods to the 
numerical solution of some exterior boundary–value problems // Proceedings of the 
Royal Society London, – 1971. v. A323, – p. 201–220. 
5 Waterman, P.C. Matrix formulation of electromagnetic scattering // Proceedings 
of the IEEE, – 1965. v.53, – p.805–812. 
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( )( ) ( )( ) ( )( ) ( )( )xfxKfixTfxBf −−= η , Sx∈ . 

Again we divide S  into "regular" elementary parts 
N

l
lSS

1=
= . 

Then the expression  

                      ( ) ( )( ) ( )( )∑
=

=
N

j
jl

N jxalxA
1

ρρ                            (12) 

at the points ( ) Nllx ,1, = , is a cubic formula for the integral 
))(( xAρ , where 

0=jla  ,  if jl = , 

( ) ( )( )
( )( ) ( ) ( )( ) jk

k
jl mesSjxlxi

lxn
jxlxa 








Φ−

∂
Φ∂

= ,,2 η ,  if  ,jl ≠  

and the following estimation is valid 
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )[ ]NRNRNRMlxAlxA N

Nl
,lnmax

,1
ρωρρρ +≤−

∞=
.           

Furthermore, if the function f  is continuously differentiable on S  
and   

∫ ∞<
d

dt
t

tfgrad
0

),(ω
, 

then the expression 

                     
( ) ( )( ) ( )( )∑

=
=

N

j
jl

N jxfblxBf
1

                            (13) 

at the points ( ) Nllx ,1, = , is a cubic formula for the integral ( )( )xBf , 
where 

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( )

−
−

−−
= ∑

≠
=

j

N

lj
j

ll mesS
jxlx

lxnlxjxjxnlxjxb
1

5
,,

2
3 

π
 

( )( ) ( )( )( )
( ) ( )

η
π

imesS
jxlx

jxnlxn
j

Qj l

+
−

− ∑
∈

3
,

2
1 

   for  Nl ,1= ,
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( )( )
( ) ( )( ) ( ) ( )( )( )

( )( ) −











∂

Φ−Φ∂
∂

∂
=

jxn
jxlxjxlx

lxn
b k

jl 
,,2 0

 ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( )

−
−

−−
− 5

,,
4
3

jxlx
lxnlxjxjxnlxjx 

π
 ( ) ( )( )

( )( ) j
k mesS

jxn
jxlxi 



∂

Φ∂
−

,η    for lPj∈    and  lj ≠ , 

( )( )
( ) ( )( ) ( ) ( )( )( )

( )( )



−








∂

Φ−Φ∂
∂

∂
=

jxn
jxlxjxlx

lxn
b k

jl 
,,2 0

 ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( )

+
−

−−
− 5

,,
4
3

jxlx
lxnlxjxjxnlxjx 

π
 

( )( ) ( )( )( )
( ) ( )

( ) ( )( )
( )( ) j

k mesS
jxn

jxlxi
jxlx

jxnlxn






∂
Φ∂

−
−

+
,,

4
1

3 η
π


    for  lQj∈ , 

and 
( ) ( )( ) ( ) ( )( ) ≤−

=
lxBflxBf N

Nl ,1
max

 
( ) ( ) ( )( )

.,)(ln
0 











++≤ ∫∞∞

dt
t

tfgradNRfgradNRNRfM
NR ω  

Using cubic formulas (12) and (13), we substitute the integral 
equation (11) by the system of algebraic equations with respect to 

−N
lz approximate values ( )( ) Nllx ,1, =ρ , that is written in the form 

              ( ) NNNNN fBzAI =+ ,                               (14) 
 where fpf NN = , ( )N

jljl
N aA

1, =
=   and ( )N

jljl
N bB

1, =
= .      

Theorem 11. Let f be a continuously differentiable function on 
S  and 

∫ ∞<
d

dt
t

tgradf
0

),(ω
. 
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Then equations (11) and (14) have unique solutions ( )SC∈*ρ  and 
NN Cz ∈* ( )0NN ≥ , as

 
0** →− ρNN pz  for ∞→N  with the 

estimation of convergence rate
 ( ) ( )( )( )NRfgradNRMpz NN ,** ωρ +≤− . 

Corollary 2. Let f be a continuously differentiable function on 
S  and 

∫ ∞<
d

dt
t

tgradf
0

),(ω
, 

( )Τ= **
2

*
1* ,...,, N

N zzzz  be a solution of the system of algebraic 
equations (14)  and  DRx \3

0 ∈ . then the sequence 
( )( )

( )( ) ( )( ) ( )( )∑∑
==
Φ−

∂
Φ∂

=
N

j
jjk

N

j
j

k
N mesSzjxxmesSjxf

jxn
jxxxu

1

*
0

1

0
0 ,,)( 

 
converges to the value ( )0xu  of the solution ( )xu  of the Dirichlet 
exterior value problem for Helmholts equation at the point 0x , and 

( ) ( ) ( ) ( )( )( )NRfgradNRMxuxuN ,00 ω+≤− .               
We give justification of the collocation method for a boundary 

integral equation of the mixed boundary value problem for 
Helmholts equation. Let 3RD ⊂ be a bounded domain with twice 
continuously differentiable boundary S , f  be a given continuous 
function on S , λ be a given value and ( ) 0Im ≥λk , 

( ) ( ) ( ) ( )( ) yxRyxyxyx
yn

yx kk ≠∈Φ−Φ
∂
∂

=Φ ,,,,,2, 3
0 , 

( ) ( )
( ) ( )∫ ∂

Φ∂
=

S
y

k dSy
yn

yxx ρρυ 
,2,1 ,

  
( ) ( ) ( )∫Φ=

S
yk dSyyxx ρρυ ,2,2 ,

 
and ( ) ( )−= ρυψ ,20 xx is a simple layer potential with density 

( )SC∈ρ  for the Laplace equation, i.e.  
( ) ( ) ( )∫Φ=

S
ydSyyxx ρρυ ,2, 020 . 
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In the paper of O.I.Panich6 it was shown that the function   
( ) ( ) ( ) DRxxxxu \,,, 3

12 ∈−= ψυµρυ , 
where µ  is a complex number, and if 0Im =k , then 0Im ≠µ , and if 

0Im >k , then 0=µ , is the solution of the mixed problem for 
Helmholts equation if the density ρ  is the solution of uniquely 
solvable integral equation  

                      ϕρρ =+ A ,                                       (15) 
where   

( ) f11 −−= µϕ , 
( ) ( ) ( )( )QLLRGKA µµλµµ 4~22~1 1 −−++−−= − , 

( )( ) ( )( ) ( ) ( )∫Φ== =
S

yk dSyyxxLxL ρρρ ,2|~
00 , Sx∈ , 

( )( ) ( )
( ) ( ) ( )∫ ∫ 








Φ

∂
Φ∂

=
S

y
S

t
k dSdStty

xn
yxxG ρρ ,,

0 , Sx∈ , 

( )( ) ( )
( )

( )
( ) ( )∫ ∫ 








∂
Φ∂

∂
Φ∂

=
S

y
S

t dSdSt
yn

ty
xn

yxxR ρρ 
,, 00 , Sx∈ , 

( )( ) ( )
( ) ( ) ( )∫ ∫ 








Φ

∂
Φ∂

=
S

y
S

t
k dSdStty

yn
yxxQ ρρ ,,

0 ,  Sx∈ . 

Dividing S  into "regular" elementary parts 
N

l
lSS

1=
= , we assume 

( ) ( ) ( ) ( ) ( ) ( )




+






 +−−= ∑∑

==

−
N

m
jmml

N

m
jm

k
ml

k
jljl bbcgba

1

00

1

01 2221 µµ
 

( ) ( ) ( ) ( )










 −−+ ∑

=

N

m
jm

k
mljl

k
jl cecc

1

00 422 µµλ ,
 where 

                                                 
6 Панич, О.И. К вопросу о разрешимости внешних краевых задач для                                    
волнового уравнения и для системы уравнений Максвелла // – Москва: 
Успехи математических наук, – 1965. т. 20, №1, – с. 221–226. 
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( ) ( ) ( ) ( ) 0==== k
ll

k
ll

k
ll

k
ll ecgb    for    Nl ,1=  , 

( ) ( ) ( )( )
( )( ) j

kk
jl mesS

lxn
jxlxb 

∂
Φ∂

=
,

   for    Njl ,1, =   и  jl ≠ , 

( ) ( ) ( )( )
( )( ) j

kk
jl mesS

lxn
jxlxg 

∂
Φ∂

=
,  for    Njl ,1, =   и  jl ≠ , 

( ) ( ) ( )( ) jk
k
jl mesSjxlxc ,Φ=    for    Njl ,1, =   и  jl ≠ , 

( ) ( ) ( )( )
( )( ) j

kk
jl mesS

jxn
jxlxe 

∂
Φ∂

=
,  for    Njl ,1, =   и  jl ≠ , 

( ) ( )
0

0

=
=

k

k
jljl bb ,  ( ) ( )

0

0

=
=

k

k
jljl cc ,  ( ) ( )

0

0

=
=

k

k
jljl ee .  

Theorem 12.  The expression  

                       ( ) ( )( ) ( )( )∑
=

=
N

j
jl

N jxalxA
1

ρρ                            (16) 

at the points ( ) Nllx ,1, = , is a cubic formula for ( )( )xAρ ,  and the 
following estimation is valid: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )[ ]NRNRNRMlxAlxA N

Nl
,lnmax

,1
ρωρρρ +≤−

∞=
. 

Using cubic formula (16), we substitute integral equation (15) by 
the system of algebraic equations with respect to −N

lz approximate 

values ( )( ) Nllx ,1, =ρ , that are written in the form 
                ( ) NNNN zAI ϕ=+ ,                               (17) 

 where ( )N
jljl

N aA
1, =

=  и ( ) fp NN 11 −−= µϕ . 
Theorem 13. Equations (15) and (17) have unique solutions 

( )SC∈*ρ  and NN Cz ∈* , respectively and 0** →− ρNN pz  as 
∞→N  with the estimation      

( ) ( ) ( )( )[ ]NRfNRNRMpz NN ,ln ** ωρ +≤− .     
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Corollary 3. Let ( )Τ= **
2

*
1* ,...,, N

N zzzz  be the solution of the 
system of algebraic equations (17) and DRx \3

0 ∈ . Then the 
sequence

  
 

( )( ) −Φ= ∑
=

N

j
jjkN mesSzjxxxu

1

*
00 ,2)(

 ( )( )
( )( ) ( ) ( )( )∑ ∑

=
≠
= 















Φ

∂
Φ∂

−
N

j
j

N

jm
m

mm
k mesSmesSzmxjx

jxn
jxx

1 1

*
0

0 ,
,

4 µ  

convergences to the value ( )0xu  of the solution ( )xu  of the mixed 
boundary value problem for Helmholts equation at the point е 0x , 
and 

( ) ( ) ( )( ) ( ) ( )[ ]NRNRNRfMxuxuN ln,00 +≤− ω . 
Now let us justify the collocation method for the system of 

integral equations of a conjugation boundary value problem for 
Helmholts equation. Let 3RD ⊂ be a bounded domain with twice 
continuously differentiable boundary S , f  and g  be the given 
continuous function on S , while k , 0k , µ  and 0µ at the given 
complex numbers 0Im ≥k , 0Im 0 ≥k  and 00 ≠+ µµ . Kress and 
Roach7 proved that combination of simple and double layer 
potentials 

( ) ( )
( ) ( ) ( ) ( ) DRxdSyyxy
yn

yxxu
S

yk
k \,,, 3∈









Φ+
∂
Φ∂

= ∫ ϕµψ , 

( ) ( )
( ) ( ) ( ) ( ) DxdSyyxy
yn

yx
xu

S
yk

k ∈








Φ+
∂

Φ∂
= ∫ ,,

,
0

0
00 ϕµψ , 

                                                 
7 Kress, R., Roach, G.F. Transmission problems Helmholtz equation // Journal of 
Mathematical Physics, – 1978. v.19, – p.1433–1437. 
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with continuous densities ψ  and ϕ , is the solution of the conjugation 
problem if ψ  and ϕ  are the solutions of uniquely solvable system of 
integral equations   

    

( ) ( ) ( )
( ) ( ) ( ) ,2~~

,2

0000

0
2
0

2
000

gKKTT

fLLKK

−=−−−−+

=−+−++

ϕµµψϕµµ

ϕµµψµµψµµ
            (18) 

where                 

0
|0 kkLL == ,  

0
|0 kkKK == , 

0
|~~

0 kkKK == , 

( )( )( ) ( )
( ) ( )( )

( ) ( ) y
kk

S

dSy
yn

yxyx
xn

xTT ψψ 







∂

Φ−Φ∂

∂
∂

=− ∫ 
,,

2 0
0 , Sx∈ .  

On the space ( ) ( )SCSC ×   introduce the operator                                               










−−
−−

+
=

KKTT
LLKK

A ~~
1

000

0
2
0

2
00

0 µµ
µµµµ

µµ
. 

Then we can rewrite system  (18) in the form 
                         ( ) hAI =+ ρ ,                                       (19) 

where  I is a unit operator on ( ) ( )SCSC × ,  









=

ϕ
ψ

ρ ,   







−+

=
g
f

h
0

2
µµ

. 

It should be indicated that ( ) ( )SCSC ×  is a Banach space with the 
norm { }

∞∞
= ϕψρ ,max

1 .  

We again divide S  into "regular" elementary parts  
N

l
lSS

1=
=

 
and let ( ) ( ) NN CSCSCp 22 :~ →×  be a linear bounded operator 
determined by the following formula 

=







=

ϕ
ψ

ρ NN pp 22 ~~

 
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )Τ= NxxxNxxx ϕϕϕψψψ ...,,2,1,...,,2,1 . 
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Consider the  −N2 dimensional matrix ( ) N
jljl

N aA 2
1,

2
=

=    with the 
elements  

0=jla   for Nl ,1=  , Nj ,1=   and jl = ; 

( ) ( )( )
( )( )

( ) ( )( )
( )( ) 








∂

Φ∂
−

∂
Φ∂

+
=

jxn
jxlx

jxn
jxlxSmes

a kkj
jl 

,, 0
0

0

µµ
µµ

 for Nl ,1=  , 

Nj ,1=   and jl ≠ ; 
0=jla  for Nl ,1= , NNj 2,1+=   and   Njl −= ; 

( ) ( )( ) ( ) ( )( )( )NjxlxNjxlx
Smes

a kk
Nj

jl −Φ−−Φ
+

= − ,,
0

2
0

2

0

µµ
µµ

  

for Nl ,1= , NNj 2,1+=   and  Njl −≠ ; 
0=jla   for  NNl 2,1+= , Nj ,1=  and  Njl += ; 

( )( )
( ) ( )( ) ( ) ( )( )( )

( )( ) 







∂

−Φ−−Φ∂

−∂
∂

+
=

jxn
jxNlxjxNlx

Nlxn
Smes

a kkj
jl 

,,
0

0µµ
   

for NNl 2,1+= , Nj ,1=  and  Njl +≠ ; 
0=jla   for NNl 2,1+= , NNj 2,1+=   and jl = ; 

( ) ( )( )
( )( )

( ) ( )( )
( )( ) 








−∂

−−Φ∂
−

−∂

−−Φ∂

+
= −

Nlxn
NjxNlx

Nlxn
NjxNlxSmes

a kkNj
jl 

,,
0

0
0

µµ
µµ

   

for NNl 2,1+= , NNj 2,1+=   and jl ≠ . 

Theorem 14. Let ( ) ( )SCSC ×∈







=

ϕ
ψ

ρ . Then the expression 

             
( )( ) ( )( )

( )( ) ( )( )

















+

+

∑∑

∑∑

=
++

=
+

=
+

=

N

j
jNlN

N

j
jlN

N

j
jNl

N

j
jl

jxajxa

jxajxa

1
,

1
,

1
,

1

ϕψ

ϕψ
                    (20) 

at the points ( ) Nllx ,1, = , is a cubic formula for ))(( xAρ , and the 
following estimation is valid 
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( ) ( ) ( ) ( ) ( )( )[ ]NRNRNRMpAAp NNN ,ln~~
1

222 ρωρρρ +≤− . 
Using cubic formula (20), we substitute the system of integral 

equations (19) by the system of algebraic equations with respect for 
to ( ) NN

N
NNN Czzzz 22

2
2
2

2
1

2 ,...,, ∈= , being the approximate value of ρNp 2~  
(here N

lz 2 , Nl ,1= , is the approximate value of ( )( )lxψ , while N
lNz 2

+ , 

Nl ,1=   is the approximate value is ( )( )lxϕ ). In its turn, we write 
this system in the form 

                 ( ) NNNN hzAI 2222 =+ ,                                (21) 
where hph NN 22 ~=  and −NI 2 is a unit operator on NC 2 . 

Theorem 15.  Let  ( ) ( )SCSCh ×∈ .  Then equations (19) and 
(21) have unique solutions ( ) ( )SCSC ×∈*ρ  and NN Cz 22

* ∈ , 
respectively and 0~lim *

22
* =−

∞→
ρNN

N
pz  with the estimation of 

convergence rate 
( ) ( ) ( )( )[ ]NRhNRNRMpz NN ,ln~

*
22

* ωρ +≤− . 

Corollary 4. Let ( )Τ= *
2

*
2

*
1

2
* ,...,, N

N zzzz  be the solution of the 
system of algebraic equations (21). Then the sequence   

( )( )
( )( ) ( )( )∑

=
+ 







Φ+

∂
Φ∂

=
N

j
jjNkj

kN mesSzjxxz
jxn

jxxxu
1

***
*

* ,,)( µ , DRx /3* ∈ , 

converges to ( )*xu , while the sequence   
( )( )

( )( ) ( )( )∑
=

+ 







Φ+

∂

Φ∂
=

N

j
jjNkj

kN mesSzjxxz
jxn

jxx
xu

1

*
*0

**
*0 ,

,
)(

0

0 µ  , Dx ∈* , 

converges to ( )*0 xu , and 

( ) ( ) ( ) ( ) ( )( )[ ]NRhNRNRMxuxu N ,ln** ω+≤− , 

( ) ( ) ( ) ( ) ( )( )[ ]NRhNRNRMxuxu N ,ln*0*0 ω+≤− . 
Method of approximation at the support points of the operator 

inverse to the operator generated by the normal derivative of a 
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double layer acoustic potential is given in chapter IV. Based on this 
method, the approximate solution of a class of surface integral 
equations of first kind and hypersingular integral equation of second 
kind of boundary value problem for Helmholts equation is studied by 
the projective methods. Furthermore, the sequences convergent to 
exact solution of the consider boundary value problems are 
constructed, the error estimations are given. The main results of this 
chapter are in the author's papers   [15, 21, 23, 27, 28, 30, 31]. 

Let 3RD ⊂  be a bounded domain with twice continuously 
differentiable boundary S , while g  is a given function on S . In the 
mentioned book of  D.Colton and R.Kress it is proved that the double 
layer potential  

( ) ( )
( ) ( )∫ ∂

Φ∂
=

S
y

k dSy
yn

yxxu ϕ
, ,  SRx \3∈ , 

with the density ( )SΝ∈ϕ  is the solution of Neumann interior and 
exterior boundary value problem for Helmholts equation if ϕ  is the 
solution of the first order hypersingular integral equation 

                   gT 2=ϕ .                                         (22) 
Note that the operator T  is unbounded in the space ( )SΝ . However, 
in this work it is shown that if 0Im >k , then for any right hand side 

( )SCg∈  the hypersingular integral equation (22) is uniquely 
solvable in the space ( )SΝ , and the solution of integral equation (22) 
has the form   

( ) ( ) gKIKIL
11 ~~2
−−

+−−=ϕ . 
Consequently, the operator 1−T , inverse to the operator T , is given 
by the relation 

( ) ( ) 111 ~~ −−− +−−= KIKILT . 

As earlier we divide S  into "regular" elementary parts 
N

l
lSS

1=
= . 

Let NI   be N dimensional unit matrix and ( )N
jljl

N kK
1,

~~
=

= , where   
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( ) ( )( )
( )( )





≠
∂

Φ∂
=

= .for        
,

2

,   f                0~
jlmesS

lxn
jxlx

jlor
k

j
kjl 

  

Lemma 1. If 0Im >k , then there exists the inverse operator    

( ) 1~ −
+ NN KI ,  and  

( ) +∞<+=
−1

1
~sup NN

N
KIM     

и 

( )( ) ( )( ) ( )( ) ≤−+ ∑
=

+−

=

N

j
jl

Nl
jxgklxgKI

1

1

,1

~~max
 

( ) ( ) ( )( )[ ]NRgNRNRgM ,ln ω+≤
∞

, 

where +
jlk~ is an element of the  −l th row and −j th column of the 

matrix ( ) 1~ −
+ NN KI .                                            

Lemma 2. If 0Im >k , then there exists the inverse matrix    

( ) 1~ −
− NN KI ,  and 

( ) +∞<−=
−1

2
~sup NN

N
KIM     

and 

( )( ) ( )( ) ( )( ) ≤−− ∑
=

−−

=

N

j
jl

Nl
jxgklxgKI

1

1

,1

~~max
 

( ) ( ) ( )( )[ ]NRgNRNRgM ,ln ω+≤
∞

, 

where −−
jlk~ is the element of the  −l th row and  −j th column of the 

matrix  ( ) 1~ −
− NN KI .          

Let 

( ) ( )( )



≠Φ
=

=
. for        ,2

, for    0
jlmesSjxlx

jl
f

jk
jl  

Theorem 16.  If 0Im >k , then the expression 
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( )( ) ( )( )∑ ∑ ∑
= = =

+−














−=

N

j

N

n

N

m
mnnjjl

N mxgkkflx
1 1 1

~~2ϕ  

is the approximate value of the solution ( )xϕ  of equation (22) at the 
points ( ) Nllx ,1, = , and   

( )( ) ( )( ) ( ) ( ) ( )( )[ ]NRgNRNRgMlxlx N

Nl
,lnmax

,1
ωϕϕ +≤−

∞=
. 

Corollary 5.  Let 0Im >k ,  

( )( ) ( )( )∑ ∑ ∑
= = =

+−














−=

N

j

N

n

N

m
mnnjjl

N mxgkkflx
1 1 1

~~2ϕ  

and Dx ∈0  ( DRx \3
0 ∈ ). Then the sequence  

( )( )
( )( ) ( )( )∑

= ∂
Φ∂

=
N

l
l

Nk
N mesSlx

lxn
lxxxu

1

0
0

,)( ϕ  

converges to the value ( )0xu   of the solution ( )xu  of the Neumann 
interior (exterior) boundary value problem for Helmholts equation at 
the point 0x , and 

( ) ( ) ( ) ( ) ( )( )[ ]NRgNRNRgMxuxuN ,ln00 ω+≤−
∞

. 
Now we study approximate solution of the first kind boundary 

integral equation of Dirichlet interior and exterior boundary value 
problems for Helmholts equation. Let 3RD ⊂  be a bounded domain 
with twice continuously differentiable boundary S , while f  be a 
given continuous function on S . In the mentioned book of  D.Kolton 
and R.Kress it was shown that the simple layer potential  

( ) ( ) ( )∫Φ=
S

yk dSyyxxu ϕ, , SRx \3∈ , 

with continuous density ϕ  is the solution of Dirichlet interior and 
exterior boundary value problems if ϕ  is the solution of the integral 
equation 

                      fL 2=ϕ .                                         (23) 
It should be indicated that the operator 1−L , inverse to the compact 
operator L , is unbounded in the space ( )SΝ . However, in this book 
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it was shown that if 0Im >k , then for any right hand side ( )Sf Ν∈  
the equation (23) has a unique solution and the solution of the 
integral equation (23) is of the form   

                  ( ) ( ) fKIKIT 112 −− +−−=ϕ .                           (24) 
However, theorem 4 shows that if ( )SJg 1∈ , then a double layer 
potential with density has a continuous derivative, where ( )SJ1  
denotes a space of continuously differentiable functions on  g  for S , 
which  

∫ +∞<
Sdiam

dt
t

tggrad
0

),(ω . 

As can be seen, the use of representation (24) for studying 
approximate solution of equation (23) is not convenient in the sense 
that additionally we have to verify fulfillment of the condition 

( ) ( ) ( )SJfKIKI 1
11 ∈+− −− . 

Therefore, it is necessary to obtain another representation for solving 
equation (23). If 0Im >k , then the operator   

( ) ( ) 111 ~~ −−− +−−= KIKILT  
is an inverse operator to  T , consequently the inverse operator 1−L  is 
determined by the relation    

( ) ( ) TKIKIL
111 ~~ −−− +−−= . 

Then the solution of equation  (23) has the form  
( ) ( ) TfKIKI

11 ~~2
−−

+−−=ϕ . 

Dividing S  into "regular" elementary parts 
N

l
lSS

1=
= , we 

assume                      
( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )

( ) ( )
−

−

−−
= ∑

≠
=

j

N

lj
j

ll mesS
jxlx

lxnlxjxjxnlxjxt
1

5
,,

2
3 

π
 

( )( ) ( )( )( )
( ) ( ) j

Qj
mesS

jxlx
jxnlxn

l

∑
∈ −

− 3
,

2
1 

π
  for   Nl ,1= ; 
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( )( )
( ) ( )( ) ( ) ( )( )( )

( )( )



−
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Φ−Φ∂
∂

∂
=

jxn
jxlxjxlx

lxn
t k

jl 
,,2 0  

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( ) jmesS

jxlx
lxnlxjxjxnlxjx







−

−−
− 5

,,
2
3 

π
  for ljPj l ≠∈ , ; 

( )( )
( ) ( )( ) ( ) ( )( )( )

( )( )



+








∂

Φ−Φ∂
∂

∂
=

jxn
jxlxjxlx

lxn
t k

jl 
,,

2 0

 ( )( ) ( )( )( )
( ) ( )

−
−

+ 3
,

2
1

jxlx
jxnlxn 

π
 

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( ) jmesS

jxlx
lxnlxjxjxnlxjx







−

−−
− 5

,,
2
3 

π
  for   lQj∈ .  

Theorem 17.  Let 0Im >k  and ( )SJf 1∈ . Then the expression  

( )( ) ( )( )∑ ∑ ∑
= = =

+−














−=

N

j

N

n

N

m
mnnjjl

N mxftkklx
1 1 1

~~2ϕ  

at the points ( ) Nllx ,1, = , is the approximate value of the solution 
)(xϕ   of equation (23), and   

( )( ) ( )( ) ( ) ( )( )[ ++≤−
=

NRfgradNRMlxlx N

Nl
,max

,1
ωϕϕ  

( )
( )

( ) 




++ ∫∫

Sdiam

NR

NR

dt
t

tfgradNRdt
t

tfgrad
2

0

),(),( ωω . 

Corollary 6.  Let 0Im >k , ( )SJf 1∈ ,    

( )( ) ( )( )∑ ∑ ∑
= = =

+−














−=

N

j

N

n

N

m
mnnjjl

N mxftkklx
1 1 1

~~2ϕ  

and   Dx ∈0  ( DRx \3
0 ∈ ). Then the sequence 

( )( ) ( )( )∑
=
Φ=

N

l
l

N
kN mesSlxlxxxu

1
00 ,)( ϕ
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converges to the value  ( )0xu  of the solution ( )xu  of Dirichlet's 
interior (exterior) boundary value problem for Helmholts equation at 
the point 0x , and 

( ) ( ) ( ) ( )( )[ ++≤− NRfgradNRMxuxuN ,00 ω
 ( )

( )
( ) 





++ ∫∫

Sdiam

NR

NR

dt
t

tfgradNRdt
t

tfgrad
2

0

),(),( ωω . 

Now we justify the collocation method for second kind 
hypersingular integral equations for Neumann's exterior boundary 
value problem and for a boundary value problem of Helmholts 
equation with impedance condition. 

Let 3RD ⊂  be a bounded domain with twice continuously 
differentiable boundary S , while −g be a given continuous function 
on S . Using representation (9), in the mentioned book of  D.Kolton 
and R.Kress, the Neumann exterior boundary value problem is 
reduced to uniquely solvable in the space ( )SΝ  a hypersingular 
integral equation of second kind   

     ( )gKgigLTiK ~+−−=−− ηψηψψ ,                     (25) 
where 0≠η is an arbitrary real number and 0Re ≥kη . Note that the 
solution of equation (25) is a boundary value of the solution of the 
Neumann exterior boundary value problem for Helmholts equation 
on S . This time the function                                     

( ) ( ) ( )
( ) ( ) ( )∫









Φ−
∂
Φ∂

=
S

yk
k dSyxyg

yn
yxyxu ,,

ψ , DRx \3∈ , 

is the solution of the Neumann exterior boundary value problem if  
( )SΝ∈ψ  is the solution of hypersingular integral equation (25). 

Furthermore, the solution of equation (25) is the solution of the 
equation of zero field method obtained by Waterman8 for acoustic 
waves scattering. 
                                                 
8 Waterman, P.C. New formulation of acoustic scattering // The journal of the 
acoustical society of America, – 1969. v.45, – p.1417–1429. 
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Let the wave number 0k  do not coincide with the eigen-value of 
Dirichlet or Neumann interior problems (for that it suffices to choose 
any value 0k  with 0Im 0 >k ). Further, we denote by zero index the 

circumstance that the parameter k , that enters into the operator K~ , L  
and T , equals the value 0k . Since the operator 

( ) ( ) ( ) ( )SSCKIKILA Ν→+−−=
−−

:~~ 1
0

1
000  

is an operator inverse to ( ) ( )SCST →Ν:0 , then conducting 
regularization, we can transform (25) to the equivalent form 

                       BgA =+ ψψ ,                                     (26) 
and this obtained equality is considered in the space ( )SC , where 

( )( )ψη
η

ψ ITTiKA
i

A −−+= 00
1 ,  ( )( )gKIiLA

i
Bg ~1

0 ++= η
η

.  

Let S  be divided into "regular" elementary parts 
N

l
lSS

1=
=

 
and   

0
|0

kkjljl ff == , Njl ,1, = , 

1−=llc   for  Nl ,1= , 

( )( )
( ) ( )( ) ( ) ( )( )( )

( )( ) +







∂

Φ−Φ∂

∂
∂

= j
kk

jl mesS
jxn

jxlxjxlx
lxn

ic 
,,

2 0η  

( ) ( )( )
( )( ) j

k mesS
jxn

jxlx


∂
Φ∂

+
,2   for  Njl ,1, = ,  jl ≠ , 

ηig ll =   for   Nl ,1= , 

( ) ( )( ) ( ) ( )( )
( )( ) j

k
kjl mesS

lxn
jxlxijxlxg 








∂

Φ∂
+Φ= 

,,2 η  

for  Njl ,1, = ,  jl ≠ . 
Theorem 18.  The expression 

                       ( ) ( )( ) ( )( )∑
=

=
N

j
jl

N jxalxA
1

ψψ                                (27) 
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at the points ( ) Nllx ,1, = , is a cubic formula for ( )( )xAψ , and   

( ) ( ) ( ) ( ) ( ) ( ) ( )( )[ ]NRNRNRMlxAlxA N

Nl
,lnmax

,1
ψωψψψ +≤−

∞=
, 

where 

∑ ∑ ∑
= = =

+−






















−=

N

n

N

m

N

t
jttmmnnljl ckkf

i
a

1 1 1

0 ~~1
η

,  Njl ,1, = . 

Theorem 19.  The expression 

                     ( ) ( )( ) ( )( )∑
=

=
N

j
jl

N jxgblxBg
1

                             (28) 

at the points ( ) Nllx ,1, = , is a cubic formula for ( )( )xBg , and   

( ) ( ) ( ) ( ) ( ) ( ) ( )( )[ ]NRgNRNRgMlxBglxBg N

Nl
,lnmax

,1
ω+≤−

∞=
, 

where 
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= = =
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−=

N

n

N

m

N

t
jttmmnnljl gkkf

i
b

1 1 1

0 ~~1
η

,  Njl ,1, = . 

Using cubic formulas  (27) and (28), we substitute equation (26) 
by the system of algebraic equations respect to −N

lz approximate 
values ( )( ) Nllx ,1, =ψ , and write in the form 

                      ( ) NNNNN gBzAI =+ ,                               (29) 
where  ( )N

jljl
N aA

1, =
= , ( )N

jljl
N bB

1, =
=  и gpg NN = . 

Theorem 20. Equations (26) and (29) have unique solutions 
( )SC∈*ψ  and NN Cz ∈* , and respectively, moreover 

0** →− ψNN pz  as ∞→N  with the estimation of convergence 
ratio    

( ) ( ) ( )( )[ ]NRgNRNRgMpz NN ,ln** ωψ +≤−
∞

. 

Corollary 7. Let ( )Τ= **
2

*
1* ,...,, N

N zzzz  be the solution of the system 
of algebraic equations (29) and DRx \3

0 ∈ . Then the sequence 
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( )( )
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==
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N
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jj

k
N mesSjxgjxxmesSz
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jxxxu
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1
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0 ,,)( 

 
converges to the value  ( )0xu  of the solution ( )xu  of the Neumann 
exterior boundary value problem for Helmholts equation at the point   

0x , moreover 
( ) ( ) ( ) ( ) ( )( )[ ]NRgNRNRgMxuxuN ,ln00 ω+≤−

∞
.   

Let 3RD ⊂  be a domain with twice continuously differentiable 
boundary  S , while f  and g be the given continuous function on 
S . In the mentioned book of D.Kolton and R.Kress it was shown 
that combination of simple and double layer potentials  

( ) ( ) ( )
( ) ( )∫









∂
Φ∂

+Φ=
S

y
k

k dSy
yn

yxiyxxu ϕη 
,, , DRx \3∈ , 

where −≠ 0η is an arbitrary real number, moreover 0Re ≥kη , is the 
solution of a boundary value problem for Helmholts equation with 
impedance condition if the density ϕ  is the solution of the following 
hypersingular integral equation 

 ( ) ( ) gLfKfiTiKfi 2~1 −=+++−− ϕηηϕη .              (30) 
Let 0Im 0 >k . Then we can transform equation (30) into the 

equivalent form 
                 gBA ~~

=+ ϕϕ ,                                       (31) 
and the obtained equation is considered in the space  ( )SC  , where 

( ) ( )( )[ ]ϕηηη
η

ϕ LfKfiTTiKIfiA
i

A ++−+−−−= 00
~11~ , 

   gA
i

gB 0
2~
η

= . 

We divide S  into "regular" elementary parts 
N

l
lSS

1=
= and let     

( )( )lxfic ll η−=1~     for  Nl ,1= ;         
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Then the expressions 

                    ( ) ( )( ) ( )( )∑
=
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j
jl

N
jxgblxgB

1

~~ ,                           (32) 

                    ( ) ( )( ) ( )( )∑
=

=
N

j
jl

N
jxalxA

1

~~ ϕϕ                            (33) 

at the points ( ) Nllx ,1, = , are cubic formulas for ( )( )xgB~  and 
( )( )xAϕ~ , respectively, moreover   

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )[ ]NRNRgNRgMlxgBlxgB
N

Nl
ln,~~max

,1 ∞=
+≤− ω , 

( ) ( )( ) ( ) ( )( ) ≤−
=

lxAlxA
N

Nl
ϕϕ ~~max

,1  
( )( ) ( )( ) ( ) ( )[ ]NRNRNRfNRM ln,,

∞∞
++≤ ϕωϕϕω . 

Using cubic formulas (32) and (33), we substitute equation (31) by 
the system of algebraic equations with respect to −N

lz  approximate 

values   ( )( ),lxϕ  Nl ,1= ,  and write in the form 
                  ( ) NNNNN gBzAI ~~

=+ ,                               (34) 

 where  ( )N
jljl

N aA
1,

~~
=

= , ( )N
jljl

N bB
1,

~~
=

=  and gpg NN = . 



39 
 

Theorem 21. Equations (31) and (34) have unique solutions 
( )SC∈*ϕ  and NN Cz ∈* , respectively, this time 0** →− ϕNN pz  

as  ∞→N  with the estimation of the convergence rate    
( )( ) ( )( ) ( ) ( )[ ]NRNRNRfNRgMpz NN ln,,** ++≤− ωωϕ . 

Corollary 8.  Let  ( )Τ= **
2

*
1* ,...,, N

N zzzz   be the solution of the 
system of algebraic equations (34)  and DRx \3

0 ∈  . Then the 
sequence 
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jxxijxxxu
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,,)( η  

converges to the value ( )0xu  of the solution ( )xu  of the boundary 
value problem for Helmholts equation with impedance condition at 
the point 0x , moreover 

( ) ( ) ( )( ) ( )( ) ( ) ( )[ ]NRNRNRfNRgMxuxu N ln,,00 ++≤− ωω . 
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Conclusions  
The dissertation work is devoted to study of approximate  

solutions of surface integral equations of boundary value problems 
for Helmholts equation by projective – grid methods. 

The main results of the dissertation work are the followings:  
1. Boundedness of the operator generated by the direct value of the 
derivative of a simple layer acoustic potential in generalized Holder 
classes, is proved. 
2. A practical formula for estimating the derivative of a double layer 
acoustic potential is given, boundedness of the operator generated by 
the derivative of a double layer acoustic potentials in generalized 
Holder spaces, was proved. 
3. A cubic formula for a class of weakly singular surface integrals 
was constructed. 
4. A method for constructing a cubic formula for a surface singular 
integral is given and based on this method, a cubic formula for the 
direct value of the derivative of a simple layer acoustic potential and 
for normal derivative of a double layer acoustic potential, was 
constructed. 
5. Justification of the collocation method for a class of weakly 
singular surface integral equation of exterior boundary value problem 
for Helmholts equation, was given. 
6. Justification of the collocation method for the system of surface 
integral equations of a boundary conjugation value problem for 
Helmholts equation, is given. 
7. Method of approximation at support points of the operator inverse 
to the operator generated by the normal derivative of a double layer 
acoustic potential was given. Based on this method, approximate 
solution of a class of hypersingular surface integral equations of first 
and second kind was studied. 
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