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GENERAL CHARACTERISTICS OF THE WORK

Rationale of the theme and development degree. it is known
that mathematical description of scattering of waves that
harmonically depend on time leads to boundary value problem for

the Helmholts equation Au + k°u =0, where Ais a Laplace operator,
k is a wave number and Imk > 0. As in many cases it is impossible

to find exact solution of boundary value problems for Helmholts
equation, there arises an interest to develop approximate methods for
solving boundary value problem for Helmholts equation with
theoretical foundation. One of the widely used methods for studying
approximation solutions of exterior boundary value problems for
Helmholts equation is their reduction to an integral equation. The
main advantage of using the method of boundary integral equations
for studying exterior boundary value problems is that such a system
allows to reduce the problem stated for an unbounded domain to the
problem for a smaller dimension bounded domain.

Note that direct application of potential theory for deriving
integral equations of exterior boundary value problem for Helmholts
equation reduces to equations that have no a unique solution on eigen
values of internal boundary value problems. However, searching the
solutions of external boundary value problems in the form of
combination of acoustic potentials of single and double layer and
also using the Green formula for deriving integral equations of
external boundary problems, the integral equations uniquely solvable
for any value of the wave number and dependent on the operator

0 (0D, (x, y)
(Tp)(x)—2 e (x):[ pe (y) p(y)dSy , xeS,
were obtained, where S'is a closed twice continuously differentiable
surface in R, ﬁ(x)is a unit external normal at the point xeS,
while @, (x,y) is a fundamental solution of the Helmholts equation,
Le.



exp(ik|x - y|)
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A counterexample structured by Liapunov' shows that for a
double layer potential with continuous density, a derivative,
generally speaking, does not exist, i.e. the operator 77 was not
determined in the space C(S) of all continuous functions on S with

the norm | /], = masx| f(x). However, in D.Kolton and R Kress book”

it was proved that the operator 7" boundedly acts in the Holder space
and a formula for calculating the derivative of a double layer acoustic
potential was given by means of surface gradient. Furthermore, in
this book it was showed that if in Imk >0, the operator
T :N(S)— C(S) is invertible and the invertible operator T~ is given
by the relation

' =—L{i-R)'(1+K)".
where

(Lp)x)=2[®, (x.y) p(»)dS,, xeS,

(Kp)x)=2 3{ %&;) p(3)dS,, xes,

[ —is a operator in the space C(S) and N(S) denotes a space of all
continuous functions ¢, whose double layer potential with density
@ has continuous normal derivatives on both sides of the surface S .

It should be indicated that the given formula in D.Kolton and
R.Kress book for calculating the derivative of a double layer acoustic
potential is not very practical. Furthermore, it should be noted that a
practice cubic formula for calculating normal derivative of double

! IonTep, H.M. Teopus noTeHnuana u ee NpUMEHEHNE K OCHOBHBIM 33j1a4aM Ma-
temarndeckoit ¢pusuku / H.M. I'tontep. — Mocksa: ['octexuznar, — 1953. — 415c.

2 Konron, JI. MeToasl HHTETpalbHBIX YpaBHEHHUH B Teopun paccesaus / J[. Koi-
toH, P. Kpecc. — MockBa: Mup, — 1987. — 311c.
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layer acoustic potential was not constructed yet. For example,
A.Yu.Anfinogenov, L.K Lifanov and P.L.Lifanov® a cubic formula
was constructed for a normal derivative of a double layer acoustic
potential in a sphere. However, the constructed cubic formula in this
work is not practical in the sense that the coefficients of this cubic
formula are singular integrals.

Furthermore, it is known that one of the methods for solving
hypersingular integral equations of exterior boundary value problem
for Helmholt equations is regularization of these equations by means

of the inverse operator 7~'. As can be seen, in spite of inevitability
~\-1 AR .
of operators (1 +K ) and (I -K ) obvious form of inverse operators

I+K and I-K, are not known, consequently the obvious form of

the inverse operator 7' is unknown. Because of these reasons, the
approximate solution of some classes of integral equations of
boundary value problem for Helmholts equation was not studied.
Consequently, development of approximate methods for solving
integral equations of boundary value problems for Helmholts
equations for any value of the wave number and its theoretical
foundation is very urgent.

Goal and tasks of the research. The main goal and tasks of the
dissertation work is to derive a practical formula for calculating the
derivative of a double layer acoustic potential, to construct a cubic
formula for the normal derivative of a double layer acoustic potential
and to study the approximate solution of some classes of integral
equations of boundary value problems for Helmholts equation for
any value of the wave number Imk >0.

Investigation methods. The methods of potential theory, theory
of singular and hypersingular integral equations, theory of operators,
functional analysis and general theory of approximate methods are

3 Andunorenos, A. 10., JIudanos, U. K., JIudanos, I1. ©. O HEKOTOPBIX THIIEP-
CHHTYJISIDHBIX OJHOMEPHBIX M JBYMEpPHBIX HHTETPANbHBIX YpaBHEHUsX // —
Mocksa: Matematudeckuii cOopauk,— 2001. T.192, Ne8, — ¢. 3—46.
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used.

The basic aspects to be defended. The following main
statements are defended:

1. To derive a practical formula for calculating the derivative of a
double layer acoustic potential.

2. To study some properties of operators generated by the direct
value of the derivative of a simple layer acoustic potential and the
derivative of a double layer acoustic potential in generalized Holder
spaces.

3. To construct cubic formulas for the direct value of the
derivative of a simple layer acoustic potential and for the normal
derivative of a double layer.

4. To study approximate solution of a class of weakly singular
surface integral equations of exterior boundary value problems for
Helmholts equation by projective methods.

5. To research approximate solution of a class of hypersingular
surface integral equations of first and second kind by projective
methods.

Scientific novelty of the research. In the dissertation work the
following main results were obtained:

1. The boundedness of the operator generated by the direct value
of the derivative of a simple layer acoustic potential in generalized
Holder classes, was proved.

2. Practical formula for calculating the derivative of a double
layer acoustic potential was given and boundedness of the operator
generated by the derivative of a double layer acoustic potential in
generalized Holder classes, was proved.

3. A cubic formula for a class of weakly singular surface
integrals was constructed.

4. A method for constructing a cubic formula for a surface
singular integral was given and based on this method, a cubic
formula for the direct value of the derivative of a simple layer
acoustic potential and for the normal derivative of a double layer
acoustic layer is constructed.



5. Justification for the collocation method for a class of weakly
singular surface integral equations of exterior boundary value
problems for Helmholts equation is given.

6. Justification of the collocation method for the system of
surface integral equation of a boundary conjugation problem for
Helmbholts equation is given.

7. The approximation method at the support points of the
operator inverse to the operator generated by the normal derivative of
a double layer acoustic potential is given. Based on this method, the
approximate solution of a class of hypersingular surface integral
equations of first and second kind, is studied.

Theoretical and practical value of the study. The work is
mainly of theoretical character. But the results obtained in the work
may be used for numerical solutions in many practical problems of
natural science (for example, in theory of diffraction of
electromagnetic and acoustic waves).

Approbation and application. The results of the dissertation
work were reported at the seminar of the department "Applied
mathematics" of Azerbaijan State Oil Academy (head: corr.-member
of NASA, prof. K.R.Aida-zadeh), at the seminar of the department
"General and applied mathematics" of Azerbaijan State University
Oil and Industry (head: prof. A.R.Aliyev), at the seminar of the
department "Mathematical analysis" of Baku State University (head:
prof. S.S.Mirzoyev), at the seminar of the department "Mathematical
physics equations" of Baku State University (head: acad. Y.A.
Mamedov), at the seminar of the section "Mathematical analysis" of
IMM of NASA (head: corr.-member of NASA, prof. V.S.Guliyev),
at the seminar of the section "Nonharmonic analysis" of IMM of
NASA (head: corr.-member of NASA, prof. B.T.Bilalov), at the
seminar of the section "Functional analysis" of IMM of NASA (head:
prof. H.I. Aslanov), at the seminar of the section "Function theory" of
IMM of NASA (head: doct. math. eci. V.E.Ismailov), at the institute
seminar of IMM of NASA (head: corr.-member of NASA, prof.
M.J.Mardanov), and at the conference dedicated to 70-th
anniversary of prof. Y.J.Mamedov (Baku, 2001), at the international
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conference "Actual problems of mathematics and mechanics"
dedicated to 90-th anniversary H.A.Aliyev (Baku, 2013), at the
international ~ conference  "Function spaces and function
approximation theory" dedicated to the 100 years of acad. S.M.
Nikolsky (Moscow, 2015), at the international conference
"Mathematical analysis, differential equations and their applications"
(MADEA-7, Baku, 2015), at the international scientific seminar
"Nonharmonic analysis and differential operators" (Baku, 2016), at
the conference "Functional analysis and their applications " dedicated
to 100 years of prof. A.Sh.Habibzadeh (Baku, 2016), at the
international conference "Weight estimates of differential and
integral operators and their application" dedicated to 70-th jubilee of
prof. R.Oynarov (Astana, 2017), at the international conference
"Operators, functions, and systems of mathematical physics"
dedicated to 70 years of prof. H.Isaxanli (Baku, 2018).

Personal contribution of the author is in formulation of the
goal and choice of research direction. Furthermore, all conclusions
and the obtained results and research methods belong personally to
the author.

Publications of the author. Publications in editions recommen-
ded by HAC under President of the Republic of Azerbaijan — 23,
conference materials — 1, abstracts of papers — 7.

Institution where the dissertation work was executed. The
work was performed at the department of "General and Applied
Mathematics" of Azerbaijan State Oil and Industry University.

Structure and volume of the dissertation (in signs, indicating
the volume of each structural subsection separately) General
volume of the dissertation work consists of — 409482 signs (title page
— 326 signs, table of contents — 3656 signs, introduction — 69200
signs, chapter I — 137400 signs, chapter II — 45300 signs, chapter I1I-
102400 signs, chapter IV — 51200 signs). Then list of references 155
names.



THE MAIN CONTENT OF THE DISSERTATION

The dissertation consists of introduction, four chapters, list of
references.

In the introduction rationale of the research work is justified,
degree of its elaboration is shown, goal and takes of the research are
formulated, scientific novelty is reduced, theoretical and practical
value is noted, information on approbation of the work is given.

In chapter I a more practical formula is developed for calculating
the derivative of a double layer acoustic potential and under weaker
conditions the boundedness of operator generated by the direct value
of the derivative of a simple layer acoustic layer and of the derivative
of a double layer acoustic potential in the generalized Holder spaces
are proved. The main results of this chapter were published in the
author's works [5, 6, 7,9, 11, 16, 24].

let us consider the direct value

V(x):jgradXQk(x,y)p(y)dSy, x:(xl,x2,x3)e S, (1)

of the derivative of a simple layer acoustic potential, where S — R’
is Lyapunov, surface, while p(y)— is a continuous function on S .

For a function ¢(x) continuous on the surface S we introduce
a continuity modulus of the form

o(0.5)=5sup 28D 550,

22} T
where @(¢,7)= ‘glyz‘igrlco(x) -p(»))
X, yeS

Theorem 1. Let S —be a Lyapunov surface and
diam S

] o(p,1)
0 t
Then integral (1) exists in the sense of the Cauchy principal value,
and

dt < 400,



suplV (o) <M[||p|| + j )dtJ

Here and in sequel, by M we will denote positive constants
different in various spaces.

Theorem 2. Let S be a Lyapunov surface with the index
O<a<l and

diajns—w(p 1) dt < 40
0 t .

Then the following estimations are valid:

h diamS
OJ(V,h)SMp (ha +a)(p’h)+".@dt+h J‘ (tpa )dl‘]
0 h
for O<a<l,

h diam$S
oV, h)<M, (h|lnh|+w(p,h)+JMdt+h [ (p’ )dtj
o o
for a=1,
where M , is a positive constant dependent only on S, k and p.
We introduce the following classes of functions determined on
(0,diamS]:

2=1p: ¢ Nlimp(s)=0,0(5)/5 L}

diamS
JO(S):{(DE X j @dt < +oo}
0
and consider the function

h diamS
7+ glh)+ | ft) di+h | (/;Lf)dt, if 0<a<l,
Z((D): ' h hdlamS
Hlinh|+ p(h)+ | St j@dt, if a=1
0 h

Let pe y and by H ( ) denote a linear space of all functions p
continuous on S and satisfying the condition

10



), x,yes,

p(x)- ply) < C ol -
where C, is a positive constant dependent on S and p, but not on

x and y. It is known that the space H (qp) is a Banach space with the

o () pl)

[y =suplol) + L )

X#y

Theorem 3. Let ¢cJ,(S), then the operator (Ap)x)=
=V(x), x € S, boundedly acts from H(p) to H(Z(p)), and

||V||H(Z(go)) s M”p”H(go)
Now we consider a double layer acoustic potential

()= faq; E")y) p(»)dS,. xeS.

where S < R*is Lyapunov's surface, while, a p(y) —is a continuous

function on §'.
Theorem 4. Let S be a Lyapunov surface, p(x) be a

continuously differentiable function on S and

P otgradp)
t |
0

Then the double layer acoustic potential W) ,(x) has a derivative

on S and

AP, (x,) =Py (x,))
dw, = d, =
gra » (x) ! gra ( 570

_ % | (r-x, ﬁ(y))s(y—x) (p() - p(x))dS, +

jp(y)dSy -

p(y)—p(x) -
P ZE5(y)dS,, xes, 2
+ o j o i(y) )

and

11



d
‘grade’p(x)‘ < MUMC&HV}”@ +||gradp||wj, Vxes§,
0

where @ (x,y)=®,(x,y)|,_, and the last integral in the equality
(2) exists in the sense of the Cauchy principal value.
Theorem 5. Let S be a Lyapunov surface with the index
0<a <1, p(x) be a continuously differentiable function on S and
@S w(gradp,t)
0 4

dt < 400,

Then for 0<a <1
a)(gradW h)S

k,p?

h diamS
<M, (h“ + o(gradp,h)+ j“’g#dp’)dz wh | Mcﬁ]
0

h

2

while for a =1
a)(gdek’p,h)S

h diamS
<M, (h|lnh|+w(gradp,h)+jwdt+h J’ Mdtj

0 h

b

where M , is a positive constant dependent only on S, k and p.

Let pey. By Hl((p) we denote a linear space of all
continuously differentiable functions p on the surface S and
satisfying the condition

| gradp(x)- gradp(y)| < C ol
where C, is a positive constants dependent on S and p, but not on

), x,yes,

x and y. It is known that the space H, ((p) is a Banach space with
the norm

gradp(x) grad,o(
||p||H1((p) = S::£|p()€1 + leig)|gl’adp(X)| +il;£g| . y| ) .

X#y
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Theorem 6. Let S—be a Lyapunov surface, and @€ J, (S )
Then the operator Ap = gradW, ,(x), xe€S§, boundedly acts from

H, ((P) to H(Z(§0))’
ng ade*pHH(Z((p)) <M ||p ”Hl(w)'
Corollary 1. Let S be a Lyapunov surface, and ¢ € J, (S ) Then
the operator T boundedly acts from H, ((o) to H (Z (go)) and

||(Tp)(x)||H(Z((p)) <M ”p”Hl((p)‘

In chapter II a method for constructing a cubic formula for a
surface singular integral is given and based on this method cubic
formulas for the direct value of the derivative of a simple layer
acoustic potential and for the normal derivative of a double layer
acoustic potential are constructed. Furthermore, a cubic formula for a
class of weakly singular surface integrals is constructed in this
chapter. The main results of this chapter are in the papers [3, 4, 8, 12,
13, 18].

Let § be a Lyapunov surface. We divide S into "regular"

N
elementary parts S = US ;. Under the "regular" elementary part we
=1
agree to understand the points set subjected to the following
reguirements:

(1) for any /€ {1,2,...,N} the elementary part of S, is closed and
0
its set of internal points S, with respect to S is not empty, and

0 0 0
mes S, =mesS, and for je{,2,..N}, j=I, SNS,=0;
(2) for any /e {1,2,...,N } the elementary part S, is a connected

piece of the surface S with a continuous boundary;
(3) forany le {1,2,...,N } there exists the so-called support point

x(1)=(x,(1),x, (1), x5(7)) € S, such that:

13



B A(N)~R(N) (r,(N)~Rl(N)©Clsgl((zjvv))scz,

where C, and C, are positive constants independent of N ), where
7,(N)=min|x - x l)| and R,(N)= max|x x IX

xe0S,; xe0S,;

(3.2) Rl( )S d /2 ,where d —is aradius of a standard sphere;
(3.3)forany je{l2,..N} r(N)~nr(N).

J

Obviously, »(N)~R(N) and lim r(N)= ]lvim R(N)=0, where

N—ow

R(N)=max R,(N), r(N)=min7;(N).

Let us consider a surface integral of the form

B(x)= j Kx y) p(»)dS,, xS, 3)

where S < R’ isa Lyapunov surface with the index o € (O,l], n— 1s
a natural number, K(x,y)-is a continuous function on SxS and
there exists a number A € (0,2) such that x,ye S
|K(x,y] <M |x - y|n_/1 , 4)
p(x)~is a continuous function on S . Let
0 for I=],

b1 =) K(x(1)x())

()= x(7)"

Theorem 7. Let a function SxS continuous on K (x, y) satisfy
condition (4) and there exist a natural number m such that

! "

Vx,y,y"eS

|K (x,5")- K(x,y") <

mesS; for [+ j.

"<&

B x_yn?’/ (5)

14



where 0<a; <1, B,20, y,20 u a,+f,+y,>n-2, j=1m.
Then the expression
N
BY(x(1))= 25, p(x(/)) (6)
T
at the points x(l), Z:L_N, is a cubic formula for the integral (3)

continuous with density p on S and the following estimation be
valid:

max{B(x0) - 5" ()] < o, (ROV)Y 10 RV )+ . R(V)) )
where y:min{n ,2-1, 77+ﬂ+2—n}, ﬂ=I{1}i1 {aj+/3j+;/}.}—17, n= r'rzlliinaj.

Now we construct a cubic formula for the direct value of the
derivative of a simple layer acoustic potential and for the normal
derivative of a double layer acoustic potential. Let

P :{ 1< < ,x(l)—x(j]S(R(N))Hl“},

0,-{ 1122 0)-+) - ()|

and V(x) = (7, (x), 7,(x), 74 (x)), where

V()= a;(x ) o)ds,, xeS (m=123)

Theorem 8. Let S be a Lyapunov surface with the index
O<a<l and peH, 0<p<1. Then the expression

v, (xl1))=
:i(ik\X(l)— x(7)explikfa(t) - x()) + (1~ explikl(t) - x(7) ) (x,, (1)~ %, ()

47r‘lx}

X

)
xplx (J))mesS +EzQ: 4”’”5611)) ((Z))r p(x;)mesS,;
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at the points x(1),1=1,N, is a cubic formula for V,(x(l)), and
@ A —
n;w\n(x(n)—w(x(z))\sM{<R<N>>M+<R<N>>w}, n=13.

where M , is a positive constant dependent only on S, k and p.

Note that by the method for constructing a cubic formula for the
direct value of the derivative of a simple layer acoustic potential one
can construct a cubic formula for other singular integrals along the
Lyapunov surface as well.

Theorem 9. Let Sbe a Lyapunov surface with the index

0<a<l, p(x)—be a continuously differentiable function on S and
diam S

f w(gradp,t)
0 t
Then the expression

(1p)" (1)) = zz (x(l))(@@ <x<z>,x<j>>—@o<x<z>,x<j>>>J

j¢l

3 i( x(j)-x ()n(X(j)))(?E( j)-x (1)»ﬁ(x(1)))(p(x( )= p(x(1)mess, +

Ly ((x(2)) ﬁ(x(j)))( (x(7))- p(x(1)))mesS,
27 o, |x ] )|

at the points x(1), [=1,N, is a cubic formula for (Tp)x), and the
following estimations are valid.:

ma (T )al1)- (7p)" ()

I=l,N

dt < +o0.

1
a  (R@N)We

< M| |, RV +|grad ol (RN ))e 4 | AL g

t

for O<a<l1,
mas (1))~ (1) (<) <

1IN
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RN

d 9
<M||p|, R(N)In(R(N)) + |grad p|, /R(N) + I M

for a=1.
Chapter III deals with justification of the collocation method for
a class of weakly singular surface integral equations of exterior
boundary value problems for Helmholts equation. Furthermore, a
sequence convergent to the exact solution of initial boundary value
problem is constructed and error estimation is given. The main
results of this chapter are in the author's papers [1, 2, 3, 10, 14, 17,
19, 20, 22, 25, 26, 29].
let us consider the integral equation
p+Bp=1, (7)
where

(Bo)x)= |5 s, x5,

S < R*is a Lyapunov surface, n is a natural numbers, K (x, y) isa
continuous function on SxS and satisfies the condition (4), fis a
given continuous function on the surface S, and p(x) is a desired

continuous function on S'.
As earlier, we divide S into “regular” elementary parts

N
S =S, and consider the matrix with the elements B" = (b, )N
=1 7=

b,; =0 forl=j;
_ K. x(1)

b, =
b))

: . N N _N 3
Let C"be a space of N —dimensional vectors z :(z1 A ,...,ZN) ,

mesS, for [+ j.

ZIN eC, [=1,N, with the norm HZNH —max‘z,
I=1,N

e Too

a ” means transportation of the vector a . Using cubic formula (6),
we substitute integral equation (7) by the system of algebraic

17



equations z with respect to approximate values p(x()), /=1,N,
that will be written in the form

(1" +BY)" = rV, ®)
where 7" —is a unit operator on the space C", " = p" f, while
p":C(S)—> C" —is a linear bounded operator determined by the

formula p" £ =(£(x(1)), f(x(2)),..., f(x(N)))" and called a simple
drift operator.

Theorem 10. Let Ker(I +B)= {O} the function K(x,y) satisfy
conditions (4) and (5) there exist a natural number { such that

¢
|K(x',y)— K(x",y)' <M Z|x' -x"
=

a;

C roon
VXL yes,

' bil
X =) x" -y

where 0<a;<1,b,20,¢;20 and a,+b,+c;,>n=-2,j=11.
Then equations (7) and (8) have unique solutions p. eC(S) and

zl e C", respectively and |z - p"p.|—>0 for N —>o with the

estimation
|22 = p" o < M ||7] (RV)Y |n RV + (1. R(N))|

where nzmin{y,c}, c:min{a ,2-4, a+b+2—n}, b =min {aj+bj+cj}—a,
=Lt

a=mina,.
j=0

Let Dc R*be a bounded domain with a twice differentiable
boundary S. In the mentioned monograph of D.Kolton and R.Kress,
it was proved that if the function u(x) has a normal derivative in the
sense of uniform convergence, i.e. the limit

az_{(x) =lim(7i(x ). gradu(x + hii(x))), xS,

on (x) 0
exists uniformly on S, then the solution of Helmholts equation u,
satisfying the ray equations, may be represented as follows:

18



_ \5(I)k(x,y)_ au()’) Wy
u(x) {{u(y, 6ﬁ(y) aﬁ(y)d)k(x,y) aS,,xeR°\D. (9)
Using this representation in the work of Burton and Miller* the
Dirichlet exterior boundary value problem for Helmholts equation is
reduced to the following second order integral equation uniquely
solvable in the space C(S) for any value of the wave number

Imk >0

p+Kp-inLp=Tf —in(Kf - f), (10)
where

(ko) =2[ 222 (e e,

oii (y)

f € N(S) is a given function, while 7+ 01is an arbitrary real number
and 7Rek >0. Note that the solution of equation (10) is a normal

derivative in the sense of uniform convergence of the solution of the
Dirichlet exterior boundary value problem for Helmholts equation on
the surface S . This time the function

)= IO )0, s, xer D,

S
is the solution of the Dirichlet exterior boundary value problem for
Helmbholts equation. Furthermore. equation (10) has the advantage
that its solution is the solution of the moments equation obtained first
by Waterman® for electromagnetic waves scattering. We write
equation (10) in the form
pla)+(4p)(x)= (B )x), (1)

where
(4p)(x)= (o )(x)-in(Lp)(x). xes.

4 Burton, A.J., Miller, G.F. The application of integral equation methods to the
numerical solution of some exterior boundary—value problems // Proceedings of the
Royal Society London, — 1971. v. A323, — p. 201-220.

5> Waterman, P.C. Matrix formulation of electromagnetic scattering // Proceedings
of the IEEE, — 1965. v.53, — p.805-812.
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(87)(x)= (T )(x)=im (Kf )(x)- f(x)), xe5s.
N
Again we divide S into "regular" elementary parts S = US,.
Then the expression _

(pr(x(z»:%a,,p(x(j» (12)

at the points x(l),l =1,N, is a cubic formula for the integral
(Ap)(x) , where

a,=0,ifl=j,

GOa) ol
=2 L., ) s i 1,

and the following estimation is valid
max| (4p)(x(1)- (4)" ((0)] < [ ], ROV 0 R(V)|+ . RV

Furthermore, if the function f is continuously differentiable on S
and

]-’a)(gradf,t) df <o
0 4 ’
then the expression
(B7)" ()= 226,/ () (13)
at the points x(/),/=1,N , is a cubic formula for the integral (Bf)(x),
where
3§ GU)AAUN AV 5
j } l X(]XS J

L 5 (lal0)

x
27 jeo |x(1)—x(j

x(
(f)))messj+i77 for I=1,N,
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<M||f], R(N)InR(N)|+ |grad f] R(N) + j Md]'

Using cubic formulas (12) and (13), we substitute the integral
equation (11) by the system of algebraic equations with respect to

z —approximate values p(x(l )), [=1,N , that is written in the form
(17 +a¥)z" =BV, (14)
where ¥ =p"f, A" = (alj )ijl and BY = (bl_j);szl.
Theorem 11. Let f be a continuously differentiable function on
S and

d

ja)(gradf, D it <oo
t

0
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Then equations (11) and (14) have unique solutions p, € C(S) and
zZYec” (N2N,), as -pVp.| >0 for N—>oo with the
estimation of convergence rate

z' —p"p. SM(«/RiNHa)(gmdf,«/RiNi)).

Corollary 2. Let f be a continuously differentiable function on
S and

d
J~ w(gradf ,t) di <o,
0 t
z) = (ZI*,Z;,...,Z:\, )T be a solution of the system of algebraic
equations (14) and x, € R*\ D . then the sequence
N
uy(x,) = Z Mf(x(j))mesSj =Y @, (x,x(j))z] mesS,
on(x(j)) =
converges to the value u(x,) of the solution u(x) of the Dirichlet
exterior value problem for Helmholts equation at the point x,, and
y (x, ) - u(x, ) < MIYRIN) + wlgrad £,4[RIV)).

We give justification of the collocation method for a boundary
integral equation of the mixed boundary value problem for

Helmholts equation. Let D — R’be a bounded domain with twice
continuously differentiable boundary S, f be a given continuous

function on S, A be a given value and Im (1;/1)2 0,

_ 5
D, (x,y)=2——~(@,(x,y)-D,(x,»)), x,yeR x=y,
oii(y)

-2

and 1//(x)=uzo(x, p)—is a simple layer potential with density

)ds, . v,(x,p)=2[®,(x,y)p(y)dS, ,

pE C(S ) for the Laplace equation, i.e.
uzo(x,p):2JCD0(x,y)p(y)dSy :
N
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In the paper of O.1.Panich® it was shown that the function
u(x)=v,(x, p)- 1o, (x,wr), xe R*\D,

where w4 is a complex number, and if Imk =0, then Imu # 0, and if

Imk >0, then x=0, is the solution of the mixed problem for
Helmholts equation if the density p is the solution of uniquely
solvable integral equation

prAp=9, (15)
where
o=(u-1)"7,
A=(u-1)" (E—zy G+2 )+/1(L—yZ—4yQ)),

aﬁ( )
<Rp><x>:£a°2%‘<if)&“§nf ﬂpwsjds .

N
Dividing S into "regular" elementary parts S = USZ , We assume
=1

-1 (k) y (k) (0) < (0) (0)
a;; :(:u _1) (2blj —2u (Zglm Coj + 221)1’” b’"/j *

m=1 m=1

+/’t(2c,(]) 2#% 4,uZe,m m/D

where

6 IMTarny, O.M. K Bompocy O pa3pemmMOCTH BHEIIHUX KpPaeBBIX 3amad s
BOJIHOBOTO YpaBHEHWsI M IS CHCTEMBbI ypaBHeHHMi MakcBemna // — Mocksa:
Ycnexu MaTeMaTn4eckux Hayk, — 1965. 1. 20, Nel, — c. 221-226.
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W =gl =el =elfl =0 for 1=V,

bl("f)zwmesS for l,j=1,_N ul+j,
J 8n(x( )) J
)

€; =Wmes5j for l,jzl,_]V 51 lij,

')‘ (0) _ (k)‘ (0) _ (k)

o0 G TG G TG ‘kzo'

Theorem 12. The expression
(4p)" (x(1))= 2 a,; plx(1) (16)

at the points x(l), [ :1,_N , is a cubic formula for (Ap)(x), and the
following estimation is valid:

max| (4 )oel0) - (4p)" ()] < [ R im ROV )+ . R(V) ]
Using cubic formula (16), we substitute integral equation (15) by
the system of algebraic equations with respect to z," —approximate
values p(x(7)), I = 1, N, that are written in the form
(1Y +4Y)z" = 9", (17)
where 4" = (a,j)ll,vj:1 e’ =(u-1)"p"f.
Theorem 13. Equations (15) and (17) have unique solutions

p.€C(S) and zV eC", respectively and ||z) —p"p.| >0 as

N — o0 with the estimation
2 = pY p.| < MIR(N)[In R(V)| + (£, R(N))).
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%

Corollary 3. Let z =(zf,z;,...,zN)T be the solution of the

system of algebraic equations (17) and x,€R*\D. Then the
sequence

(1) =23 @, (x,2(7)) 2 mesS, -

j=1

Z]i: (xo, ( )) m[: qDO(x(j),x(m))z; mesS,, |mesS,

ori(x(/))

convergences to the value u(x,) of the solution u(x) of the mixed

m#j

boundary value problem for Helmholts equation at the point e x,,
and
|uN(xO) x0 <M[a)fR |lnR )H
Now let us justify the collocatlon method for the system of
integral equations of a conjugation boundary value problem for

Helmholts equation. Let D — R’be a bounded domain with twice
continuously differentiable boundary S, f and g be the given

continuous function on S, while k, k,, x4 and p,at the given
complex numbers Imk>0, Imk, >0 and u+p,#0. Kress and

Roach’ proved that combination of simple and double layer
potentials

()= J{ ((;)y)w )wmk(x,y)q)(y)}dsy,xezf\5,
(x,y)

ﬁ(y () oD, (x,y)go(y)}dSy ,xeD,

7 Kress, R., Roach, G.F. Transmission problems Helmholtz equation // Journal of
Mathematical Physics, — 1978. v.19, — p.1433-1437.
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with continuous densities i and ¢, is the solution of the conjugation
problem if  and ¢ are the solutions of uniquely solvable system of
integral equations

(e )+ (K = K Y + (2L = g2 Ly Jp =21,

SR (18)
(u+ t)o—(T =T )y (K - 1K, Jop = -2,

where
Ly=L |k:k0 , Ky=K |k:k0 , Ky=K |k:k0 )

=Ly Xe)=2] a;(x)(@(@k (x,)a;;)aqu)) } (x,y))JW(y)dSy e

On the space C(S)xC(S) introduce the operator
1 (uK—uoKo ©L —ﬂéLoj
H+ Hy I, =T IUOEO_IUE .
Then we can rewrite system (18) in the form
(I+4)p=h, (19)
where [/ is a unit operator on C (S )x C (S ),

o) el
p_ s h_ .
o H+ U\~ &

It should be indicated that C(S)xC(S) is a Banach space with the
norm | pl, =max{ly |, .[o]. )

A=

N
We again divide S into "regular" elementary parts S = US ;
=1

and let p*V :C(S)xC(S)— C*" be a linear bounded operator
determined by the following formula

~ ~oN| ¥V
psz:pzN( J:
®

= (y (Ol (<2))..p (x(V)). (1)) (2)).... (V)
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Consider the 2N —dimensional matrix 4*" = (al_/. )[”;/:1 with the

elements

a,; =0 for

} :
_mesS, (ﬂ o k(x(l),.x( j) oD, (x( )"x(j ))j

a,

T+, o (x(/)) o (x(/))
j=LN and [#j;
;=0for/=1,N, j=N+1,2N and [=j-N;
meSS
a,j=—’”(u ©, (x()x(j - N)- 2 @, (x(1).x(j- V)
H+ My

for /[=1,N, j=N+1,2N and [#j—-N,;
a,;=0 for I=N+1,2N, j=1,N and [=j+N;
a,j=meSSj ] 0 (8(<Dk0(x(l—N),x({))—CDk(x(l—N),x(j)))}
p+ g O ({1 = N)) o (x(/))
for I=N+1,2N, j=1,N and [# j+ N;
a,;=0 for I=N+1,2N, j=N+1,2N and [ = j;
mesSj_N( Gq)ko(x(l—N),x(j—N))_ aq)k(x(l_N),x(j_N))J
a0 @GN aiGi-N)
for I=N+1,2N, j=N+1,2N and /# .

aljz

Theorem 14. Let p = [W] e C(S)xC(S). Then the expression
®

ga,,mx(j»&a,,m,. olx(/)

A (20)

ZN;aN+l,j ‘//(x(j))"' iaNH,NH‘ ¢(x(]))

=l
at the points x(l), [=1,N, is a cubic formula for (Ap)(x), and the
following estimation is valid
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5 (4p)-a (5" p)] < M| o], RN ) 1n RN + 0. RN

Using cublc formula (20), we substitute the system of integral
equations (19) by the system of algebraic equations with respect for

to z*" (sz 23" e Zon )e C*", being the approximate value of 5°" p
(here z2", I=1,N, is the approximate value of y(x(!)), while z2,,

[=1,N is the approximate value is go(x(l ))) In its turn, we write
this system in the form

(]ZN +A2N)Z2N —p @1)
where #°Y = p*"h and I *"—1is a unit operator on C*" .

Theorem 15. Let heC(S)xC(S). Then equations (19) and
(21) have unique solutions p,eC(S)xC(S) and z2¥ eC?,
respectively and Ilgrolo H 2N -p* ,0*H=O with the estimation of
convergence rate

|22 - p.]| < M [R(N)|1n R(N) + @ (1. R(N))].

Corollary 4. Let z" :(zf,zz,...,z;N)T be the solution of the
system of algebraic equations (21). Then the sequence

uN(x*):ﬁ sz+y®k(x*,x(j))zjw mesS,, x e R’/ D,
=L o) )

converges to u( *) while the sequence
a(Dko (x x(])) *

u) (x,)= Z(WZ +,uo(Dko(x*,x(j))z;,ﬁjmesSj , x. €D,
converges to U, (x*) and
(") ule” )| < M [RON)| I R(V)| + o (B, R(N)),
|’ (x. )=y ()| < M [R(V)| 1n R(N)|+ @0 (R, R(N))].

Method of approximation at the support points of the operator
inverse to the operator generated by the normal derivative of a
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double layer acoustic potential is given in chapter IV. Based on this
method, the approximate solution of a class of surface integral
equations of first kind and hypersingular integral equation of second
kind of boundary value problem for Helmholts equation is studied by
the projective methods. Furthermore, the sequences convergent to
exact solution of the consider boundary value problems are
constructed, the error estimations are given. The main results of this
chapter are in the author's papers [15, 21, 23, 27, 28, 30, 31].

Let Dc R’ be a bounded domain with twice continuously
differentiable boundary S, while g is a given function on §. In the

mentioned book of D.Colton and R.Kress it is proved that the double
layer potential

u(x)=£“‘§;—g’;)y)¢(y)dsy, fe RS,
with the density ¢ e N(S ) is the solution of Neumann interior and
exterior boundary value problem for Helmholts equation if ¢ is the
solution of the first order hypersingular integral equation
Tp=2g. (22)

Note that the operator 7' is unbounded in the space N(S). However,
in this work it is shown that if Imk >0, then for any right hand side
ge C(S) the hypersingular integral equation (22) is uniquely
solvable in the space N(S), and the solution of integral equation (22)
has the form

p=—2L(1-K)]'(1+K)g.
Consequently, the operator T, inverse to the operator 7', is given
by the relation

T =—L{-R)'(1+K)".

N
As earlier we divide S into "regular" elementary parts S = US )
=1

Let 7V be N dimensional unit matrix and K~ = (E,)N

o where
sJ=
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) 0 for 1=,
k[j = 2w mesS. for l?ﬁj-
oii(x(1)) !

Lemma 1. If Imk >0, then there exists the inverse operator
(IN +IZN)_1, and
(IN +IZN)_1H<+oo

M, =sup
N

max <

=LV ((I " E)_I g)(x(l))— é’gj 2(x(/))

<M [Jg], ROV ROV + (g R(V))]

where l;,; is an element of the | —th row and j—th column of the

~ v\l
matrix (IN +KN) .
Lemma 2. Jf Imk >0, then there exists the inverse matrix

(IN—IZN)%, and
IV KV B < +00
&)

M, =sup
N
and

max <
I=1,N

(-R)" et 37 )

<M [Jg], RV)|in R(V)|+ (g, R(N))],
where /;l; —is the element of the [—th row and j— th column of the
matrix (IN - I?N)f1 .
Let
0 for /=],

Jij ={2CDk(x(l),x(j))mesSj for [#j.
Theorem 16. If Imk > 0, then the expression
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n=l

0" 0)= 2% 1, [ S5 £ 5 stao) |
ol

is the approximate value of the solution ) of equation (22) at the

points x(1),1=1,N , and
max| o (x(1)) - " (x(1))| < M ([, RV)in R(V) + g, R(V))].

Corollary 5. Let Imk >0,

0" ()=23 1, £, S R eloto) |

m=1

and x, € D (x, € R*\ D). Then the sequence

@, (x0,x(1))
uy(x)) = Z (()) ® (x(l))messl

converges to the value u(xo) of the solution u(x) of the Neumann

interior (exterior) boundary value problem for Helmholts equation at
the point x,, and

o ()= ) < M [ g, ROV nR(V )|+ o(g, ROV)) |
Now we study approximate solution of the first kind boundary
integral equation of Dirichlet interior and exterior boundary value

problems for Helmholts equation. Let D = R® be a bounded domain
with twice continuously differentiable boundary S, while f be a

given continuous function on § . In the mentioned book of D.Kolton
and R.Kress it was shown that the simple layer potential

)zj@k(x,y)go( )dSV ,xeR\S,
S

with continuous density ¢ is the solution of Dirichlet interior and
exterior boundary value problems if ¢ is the solution of the integral
equation

Lp=2f. (23)
It should be indicated that the operator L', inverse to the compact
operator L, is unbounded in the space N(S). However, in this book
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it was shown that if Imk >0, then for any right hand side f € N(S )
the equation (23) has a unique solution and the solution of the
integral equation (23) is of the form

p==2T(I-K)'(I+K)"f. (24)
However, theorem 4 shows that if geJ, (S ), then a double layer
potential with density has a continuous derivative, where J,(S)

denotes a space of continuously differentiable functions on g for §,
which

diam S

w(grad g ,t)
=
As can be seen, the use of representation (24) for studying
approximate solution of equation (23) is not convenient in the sense
that additionally we have to verify fulfillment of the condition

(I-K)'(I+K)" feJ,(S).
Therefore, it is necessary to obtain another representation for solving
equation (23). If Imk > 0, then the operator

7 =—1(1-K)'(1+K)"

is an inverse operator to 7, consequently the inverse operator L' is
determined by the relation

dt < 400 .

-1

L' =—(1-R)'(1+K)'r.
Then the solution of equation (23) has the form
o=-2(1-R)'(1+K) 11

N
Dividing S into "regular" elementary parts S:USI, we
=1
assume

mesS i~




3 G0N T, s o oo,
o (1) ()} } % for 7€,
Theorem 17. Let Imk >0 and f €J,(S). Then the expression

o) =25E | S 5 1600 |

at the points x(l ), [=1,N, is the approximate value of the solution
o(x) of equation (23), and
max| ¢ (x(1)) - " (x(1))| < MR(N) + o(grad £, R(N))+
=N
\/W diam S
g ad 0y, gy Agred 0 dt}_
0 R(N)

Corollary 6. Let Imk >0, feJ,(S),
N - (N _ (N
0" )=25 K| S 5 1) |
Jj= n= m=
and x, €D (x, € R*\ D). Then the sequence

0,(50) =3 @,y x0)" ({0 mess
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converges to the value u(x,) of the solution u(x) of Dirichlet's

interior (exterior) boundary value problem for Helmholts equation at
the point x,, and

|uN(x0)—u(x0) SM«/RiNi+a)(gradf,R(N))+
JR(N) diam$S
o[ AL gy gy [ LD g

0 R(N) {

Now we justify the collocation method for second kind
hypersingular integral equations for Neumann's exterior boundary
value problem and for a boundary value problem of Helmholts
equation with impedance condition.

Let Dc R’ be a bounded domain with twice continuously
differentiable boundary S, while g—be a given continuous function
on S . Using representation (9), in the mentioned book of D.Kolton
and R.Kress, the Neumann exterior boundary value problem is
reduced to uniquely solvable in the space N(S) a hypersingular
integral equation of second kind

v-Ky -inTy =-Lg-in(g+Kg). (25)
where 7# 01s an arbitrary real number and 7Rek > 0. Note that the
solution of equation (25) is a boundary value of the solution of the
Neumann exterior boundary value problem for Helmholts equation
on §. This time the function

)=o) 2 )0 (), vk B.

is the solution of the Neumann exterior boundary value problem if
7 eN(S ) is the solution of hypersingular integral equation (25).
Furthermore, the solution of equation (25) is the solution of the
equation of zero field method obtained by Waterman® for acoustic
waves scattering.

8 Waterman, P.C. New formulation of acoustic scattering // The journal of the
acoustical society of America, — 1969. v.45, — p.1417-1429.
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Let the wave number k, do not coincide with the eigen-value of
Dirichlet or Neumann interior problems (for that it suffices to choose
any value k, with Imk, >0). Further, we denote by zero index the

circumstance that the parameter &, that enters into the operator K.,L
and T, equals the value k. Since the operator

dy=—L(I-K, ) (1+&,)" :c(s)>N(s)
is an operator inverse to 7,:N(S)—C(S), then conducting

regularization, we can transform (25) to the equivalent form
v+ Ay =Bg, (26)
and this obtained equality is considered in the space C(S), where

Ay :%AO(KH?](T—TO)—I)z//, Bg:%AO(L+i77([+IZ))g.

N
Let S be divided into "regular" elementary parts S = U S, and

=1

fz? :fl_/ |k=k0 , L,j=LN,
¢, =-1 for I=1,N,

o (e, (x)x()-@, (x(1)x()) .
=25 1))[ i (x(})) }messf
+2%l()j)€)(j))mes% for l,jzl,_N, [#7],
g, =in for I=1,N,

J

e =3 0,1+ LD

for l,j:I,_N, [#].
Theorem 18. The expression

(4v) (c0)= 2, ) @n
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at the points x(I),1= LN, is a cubic formula for (4 1,//)(x) , and
Illzl%(‘ (A W)x(l)—(A l//)Nx(l)‘ <M [” 1//||wR(N)|InR(N)|+a)( ,R(N))],

sz 5 )

Theorem 19. The expression

(Bg>N<x(z>>=ibug<x<j>> (28)

at the points x(1),1=1,
masx| (Bg x(()-(Bg) " x(

where

is a cubic formula for (Bg)x), and
\< M || g, R(W)|In R(V)|+ (g, R(N)],

:_—Z(fln[anm(katgujj] l,j=1,N.

Using cubic formulas (27) and (28), we substitute equation (26)
by the system of algebraic equations respect to z," —approximate

values w/(x(/)), /=1,N, and write in the form
(1" +4Y)" =BVg", (29)
N N
where 4" = (a,j)l,jzl, B = (b;j)l,jzl ngh=plg.
Theorem 20. Equations (26) and (29) have unique solutions
w.eC(S) and z¥eCY, and  respectively,  moreover

N N
Ze =P W
ratio

—0 as N — oo with the estimation of convergence

<M [Jg]. R(V)|in R(N)|+ (2, R(V))].

z' - py.

Corollary 7. Let z' = (zl*,z;,...,z;, )T be the solution of the system
of algebraic equations (29) and x, € R> \ D . Then the sequence
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3 5®k(xo,x(j)) 2" mesS . — S . x(iNelx( i mes
()=, G0 o mesS, jZZ;CDk( 0-x(/)g(x(j))mesS,

converges to the value u(x,) of the solution u(x) of the Neumann

exterior boundary value problem for Helmholts equation at the point
X,, moreover

oy o) =l ) < M (g, ROV In ROV + o (g, R(V)) .
Let D R’ be a domain with twice continuously differentiable

boundary S, while f and g be the given continuous function on

S. In the mentioned book of D.Kolton and R.Kress it was shown
that combination of simple and double layer potentials

L4@:j%pAmyyan%%%ﬁﬂ}¢@yﬁ;,xeRs\ﬁg

N
where 77# 0— is an arbitrary real number, moreover 77 Rek >0, is the

solution of a boundary value problem for Helmholts equation with
impedance condition if the density ¢ is the solution of the following

hypersingular integral equation
(l—inf)(p—(l?+i77T+i77fK+fL)¢):—2g. (30)
Let Imk,>0. Then we can transform equation (30) into the
equivalent form
o+Adp=Bg, 31)
and the obtained equation is considered in the space C(S) , where
~ 1 . = .
dp-= —EAO[(I—mf)I—(K+177(T—T0)+177fK+fL)]¢>,
~ 2
Bg=—4g.
mn

N
We divide S into "regular” elementary parts S = J S, and let

=1

¢, =1-inf(x(l)) for [=1,N;
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o (Ao Gl)x()- @, (<)x()

. il: )aﬁ((x%))( ) (x(?) (j)messj
oD, (x(7), x(j Dy . oD, (x(/),x(j mesS . —
et "SI gy e

177 n=1 m=1 t=1
g// __iilflg(i ]:n,mk’;] jj , L,j=1,N.
17 n=1 m=1
Then the expressions
(Ba)' ()= 25, &), (2)
(ip)' (x0)= 27, 9lx(/) (33)

at the points x(/),/=1,N, are cubic formulas for (EgXx) and

|

(Z 0 x), respectively, moreover

(Be)' (x(1)- (B x(t))| < M [w(g. R(V))+] ¢ |, R(V) 1n R(N)

(o) (x0)- ()l <

<M [olp. RV o], o7 RN+ o], R |in ROV)|
Using cubic formulas (32) and (33), we substitute equation (31) by
the system of algebraic equations with respect to z, — approximate

max
I=L,N

max
I=1,N

values ¢(x(1)), I=1,N, and write in the form
(1" +2%) =BYg", (34)

~

where A" = (Fz,j )Z'FI, B = (b,‘,- )Zizl and g" =p"g.
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Theorem 21. Equations (31) and (34) have unique solutions
0. EC(S) and z) e C", respectively, this time H zl —pNgo*H —0
as N — oo with the estimation of the convergence rate

|22 - p .| <M [0(g.RWN)+o(f.RIN)+ RIV)|In R(V) ]

Corollary 8. Let =z =(zl*,z;,...,z;,)T be the solution of the
system of algebraic equations (34) and x, e R*\D . Then the

sequence

=50, s

converges to the value u(xo) of the solution u(x) of the boundary

value problem for Helmholts equation with impedance condition at
the point x,, moreover

| (xv))-ulx,)| < M 0(g, RIV))+ (£, RIV))+ RNV |In RNV ]
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Conclusions

The dissertation work is devoted to study of approximate
solutions of surface integral equations of boundary value problems
for Helmholts equation by projective — grid methods.

The main results of the dissertation work are the followings:
1. Boundedness of the operator generated by the direct value of the
derivative of a simple layer acoustic potential in generalized Holder
classes, is proved.
2. A practical formula for estimating the derivative of a double layer
acoustic potential is given, boundedness of the operator generated by
the derivative of a double layer acoustic potentials in generalized
Holder spaces, was proved.
3. A cubic formula for a class of weakly singular surface integrals
was constructed.
4. A method for constructing a cubic formula for a surface singular
integral is given and based on this method, a cubic formula for the
direct value of the derivative of a simple layer acoustic potential and
for normal derivative of a double layer acoustic potential, was
constructed.
5. Justification of the collocation method for a class of weakly
singular surface integral equation of exterior boundary value problem
for Helmholts equation, was given.
6. Justification of the collocation method for the system of surface
integral equations of a boundary conjugation value problem for
Helmbholts equation, is given.
7. Method of approximation at support points of the operator inverse
to the operator generated by the normal derivative of a double layer
acoustic potential was given. Based on this method, approximate
solution of a class of hypersingular surface integral equations of first
and second kind was studied.
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