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GENERAL CHARACTERİSTİCS OF THE WORK 

Rationale and development degree of the topic. Covers are 

widely used constructions in nuclear reactors, space vehicles, aviation, 

rocket making, shipbuilding, making reservoirs, and construction in 

modern technology. Applied theories based on various hypotheses are 

used during the calculation of covers. Determining the areas of 

application of those theories and the need to create new applied theories 

requires the study of coatings based on the equations of elasticity theory. 

The study of the stress-strain state of coatings based on the equations of 

the theory of elasticity is a difficult mathematical problem. Methods of 

solving three-dimensional problems for coatings are given in the works 

of A.Byuffler, K.Friedrichs, R.Dressler, I.I.Vorovich, Y.A.Ustinov, 

A.L.Goldenweiser, V.A.Lomakin, V.P.Plevako, M.F.Mehdiyev, 

S.D.Akbarov and other scientists. 

Object and subject of the study. Applicantion of asymptotic 

methods for studying stress-strain state of a small-thickness, radial, 

inhomogeneous transversally isotropic spherical shell. 

Goals and objectives of the study. To define the character of 

stress-strain state of a radial inhomogeneous transversally isotropic 

spherical shell with no 0 ,   poles whose elasticity radius change 

according to the linear law with respect to the radius. On the basis of 

elasticity theory equations to obtain asymptotic expressions; to calculate 

the displacement vector and stress tensor components; to study dynamic 

problem of elasticity theory with respect to the axis for a transverse-

isotropic spherical shell with a lateral surface free from load; to 

construct exact and asymptotic solutions to the problems of torsional 

vibration of a transverse-isotropic spherical shell.          

Research methods. The research methods are based on the 

metods of asymptotic integration of elasticity theory equations, 

homogeneous solutions.  

The main thesis to be definded.  
- Studying torsional problems of elasticity theory for a radial 

inhomogeneous transversally isotropic spherical shell symmetric 

with respect to the axis. 

- Constructing inhomogeneous solutions and their classification.   
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 - Estimating the influence of inhomogeneity of the material of 

a transversally-isotropic spherical shell on the stress-strain state. 

- Studying torosional vibrations of a transverssaly-isotropic 

spherical shell. 

- Analysing dynamical problems of elasticity theory for a 

transversally-isotropic spherical shell with respect to the axis.    

- defining asymptotic expressions enabling to calculate stress-

strain state for finite and high frequency vibrations.       

Scientific novelty of the study. The main results obtained in 

the dissertation work are the followings: 

- A symmetric problem of elasticity theory for a radial 

inhomogeneous transversally-isotropic spherical shell with no 0 ,   

poles and with a lateral surface free of load, with studied. Exact and 

asymptotic solutions of the problem were structured.  

Asymptotic expressions for the displacement vector and stress 

tensor components were obtained. It was shown that the homogeneous 

solution consists of the sum of expanded solutions that is equivalent 

to the principal vector of stresses acting in the section const  of 

the spherical shell, simple boundary effect and boundary layer 

character solutions. The character of the stress-strain state defined by 

these solutions is studied. The possibility of the change in stress-

strain state of the boundary layer character solution located on the 

seats of the spherical shell (in conic sections) expanding interior to 

the domain for from the seats, was defined. 

- A problem of elasticity theory symmetric with respect to the 

axis for a radial inhomogeneous transversally isotropic spherical 

shell with no 0 ,   poles and with fixed lateral surface was studied. 

It was shown that the homogeneous solution consists of a boundary 

layer character solutions equivalent to the Sain-Venant boundary 

effect for inhomogeneous transversal-isotropic plates localized only 

in conic sections.       

- Torsional problems were studied for a radial inhomogeneous 

shperical shell in the case when the lateral surface of the spherical 

shell is free from stress and the lateral surface of the spherical shell is 

closed.In the case when the lateral surface of the shell is free from 
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stress, it was shown that the ingomogeneous solution consists of the 

expanded solution propertional to the torgue of stresses acting in the 

section const  and boundary layer solutions damping by the 

exponential law by moving a way from conical section. When the 

lateral surface is closed, in was defined that the problem has only a 

boundary layer character.     

- The dynamic problem of elasticity theory symmetric with 

respect to the axis was studied for a transversally-isotropic spherical 

shell with lateral surface free from load by the asymptotic integration 

method, finite and high frequency vibrations of the spherical shell 

was studied. Asymptotic expressions enabling to calculate the stress-

strain state at various values of frequency were obtained.  

- Given various boundary conditions in the lateral surface of a 

transversally-isotropic shperical shell, the torsional vibrations of the 

spherical shell were studied.   

General methodology of the study. The methodology of thye 

research is based on asymptotic integration of elasticity theory equations. 

Theoretical and practical value of the study. This work is 

of theoretical character. A new class of solutions that can not be 

described by applied theories of shells are determined. The obtained 

asymptotic formulas enable to calculate stress-strain state of a radial 

inhomogeneous cylindrical shell, to estimate the application domain 

of various applied theories existing for a cylindrical shell and to build 

more exact applied theories. 

Approbation and application of the work. The results of 

the dissertation work was reported at the conference ”Classic and 

modern problems of mechanics” devoted to 100-th jubilee of prof. 

A.Amenzadeh (Baku, 2014), The XLIV International conference 

“Russian science in modern world” (Moscow, 2022, 28 February), in 

the XIV scientific practical conference “Young scientists of Russian 

Federation” (2022, 23 August), in the 7th International conference on 

“Control and optimization with industrial applications” (COİA-2020, 

Baku, 26-28 august 2020), at the scientific seminar of the chair of 

“Mathematics and Statistics” of UNEC.  

Author’s personal contribution. All the results of the work 

except the problem statement belong to the author. 
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Author’s publications. 5 papers in the publications recommended 

by the HAC at the President of the Republic of Azerbaijan, 4 in 

proceeding of conferences. 

The name of the organization where the work was 

executed. Dissertation work was carried out at the "Deformable 

solid mechanics" department of the Institute of Mathematics and 

Mechanics of the Ministry of Science and Education of the Republic 

of Azerbaijan. 

Total volume of the dissertation work indicating separately 

the volume of structural units in signs. 

The 138 page dissertation work consists of introduction, 2 

chapter and the used references. The total volume of the work is  

233823 signs (title page -409, contents -2447, introduction-18967, 

chapter I-124000, chapter II -88000). The work contains 1 figure, 10 

graphs and a list of refernces with 98 names. 

 

THE MAIN CONTENT OF THE DISSERTATION WORK 

Rationale of the topic, review of the works related to the topic, 

goal of the study and brief content of the work are given in the 

introduction.  

Chapter I is called "Static problems of elasticity theory for 

radially inhomogeneous transversally-isotropic spherical coating". 

In chapter asymptotic theory of a radial inhomogeneous small-

thickness transversally isotropic spherical shell whose elasicity 

modulus change with respect to the radius changing with a linear 

law, is interpreted. 

 In 1.1 we state a boundary value problem for a radial 

inhomogeneous transversally-isotropic spherical shell with no 0 ,  

poles and with a lateral surface free from load.  

In the spherical coordinate system we consider a problem of 

elasticity theory for a radial inhomogeneous small-thiskness 

transversally –isotropic shperical-shell with volume 

 ]2;0[],;[],;[ 2121   rrr   and with no 0 ,   

poles, symmetric with respect to the axis.  
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İt is assumed that the elasticity modulus change with respect 

to the radius by the linear law  
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 İt is assumed that the lateral surface of the spherical shell is 

free from stresses: 
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and on the seats of the spherical shell (on conic sections) the 

boundary conditions 
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retaining it in equilibrium, are given. 

Here )2;1()(),(),( 321 sfff sss   are smooth functions satisfying 

the equilibrium condition and of order  1O  with respect to the 

parameter  .  

Problem (3), (6), (8) characterzes the torsion of a radial 

inhomogeneous spherical shell.  The solution of the problem (1), (2), 

(4), (5) is sought in the form of  
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Substituting (9) in (1),(2),(4),(5) and take into account (10):  
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2. The set ),(2 z  consists of )( 2
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10.  for  0,0 2
2
11  bbb    

    ,0)(sin)()(sin)( 0212102121  kk gggggggg    (20) 

here 

;; 2
2
1122

2
111 bbbgbbbg   

    .)(;)(22 1)0(
11

)0(
222

)0(
22

)0(
11

2)0(
12

)0(
12

)0(
44

1)0(
11

)0(
441


 bbbbbbbbbbb  

20. for 0,0 2
2
11  bbb   

,0)2()2sin( 00  kk sh                       (21) 

here 

).(

);(

2
2
112

2
2
111





ibbbg

ibbbg




 

30. for 2
2
11 ,0 bbb    

,02)2sin( 00  kk gg                             (22) 

here .1bg   

40.  for 0,0 2
2
11  bbb   
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    ,0)()()()( 0212102121  kk ggshggggshgg       (23) 

here             .; 2
2
1122

2
111 bbbgbbbg   

50. for 0,0 2
2
11  bbb   

    ,02sin2 00  kksh                      (24) 

here  

).(

);(

2
2
112

2
2
111





ibbbg

ibbbg




 

 

60. for 2
2
11 ,0 bbb    

,02)2( 00  kk ggsh                                (25) 

here .1bg    

In 1.3, the solutions corresponding to the above defined roots 

of the characteristic equation and the general solution  

,),( )3()2()1(
  uuuu                              (26) 

,),( )3()2()1(
  uuuu                              (27) 

of the problem (1), (2), (4), (5) are constructed. 

In 1.4, the solutions are classified and the nature of the stress-

strain state corresponding to them is determined. It is shown that the 

solution of (17) corresponding to the root 5.1z  characterizes the 

motion of the sphere as an absolute solid body. According to the root 

5.1z of equation (17) 

 ,1
2

lncos),()1(




















 ctgBu                       (28) 

,
2

lnsin),()1(

















 


 ctgctgBu                   (29)  

the solution is the spreading solution and is equivalent to the principal 

vector of the stresses acting on the section const :  
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                             ).2(2 )0(
22

)0(
23  shBbbP                                  (30)   

The solution  

. 
























4

1

2

)0(
11

)0(
1222

0

1

12)2( ),()(
2

)(2
1);(

k
kkk mO

b

b
z

e

ee
Mu         

(31) 

















4

1 1
2
0

21)2( ),()();(
k

k

k

k mO
ez

ee
Mu             (32) 

corresponding to the roots of (18) included in the set );(2 z is a 

boundary effect solution is a boundary effect solution. 

The stresses determined by the solutions corresponding to the 

roots included in sets );(2 z  and );(3 z  are self-equilibrating in 

arbitrary section const . 

Solutions (28), (29), (31), (32) determine the internal stress-strain 

state of a non-homogeneous transverse-isotropic spherical coating of 

small thickness. The first limits of the deviations of the sum of those 

solutions to the parameter   are the same as the solutions obtained from 

the theories of application of covers. The solutions corresponding to the 

roots of (19) included in the set );(3 z  have a boundary layer 

character and those solutions are not determined by any applied theory. 

Boundary layer solutions are localized around the seats (conical 

sections) of the spherical cover, and the first limit of those solutions is 

equivalent to the Saint-Venant boundary effect in the theory of 

inhomogeneous transverse-isotropic plates. For real k0 , the boundary-

layer characteristic solutions are weakly damped, and those solutions 

propagate into the domain, changing the stress-strain state far from the 

conic sections. In this case, the stress-strain states of non-homogeneous 

transverse-isotropic and non-homogeneous isotropic spherical coatings 

differ qualitatively. When k0  are purely imaginary and take complex 

values, the stress-strain state of the inhomogeneous transverse-isotropic 

spherical coating is qualitatively the same as the stress-strain state of the 

inhomogeneous isotropic spherical coating, and they differ only in the 

extinction rates of the boundary layer solutions. 
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)2,1(  jj  when moving away from the conic sections, the 

boundary effect and boundary layer characteristic solutions disappear 

by exponential law. 

In 1.5, the issue of satisfying the given boundary conditions on the 

seats (conic sections) of the spherical cover is considered. According to 

(30), the constant B  is determined by means of the head vector P . A 

system of finite and infinite linear algebraic equations known from the 

theory of transversal-isotropic inhomogeneous plates is obtained in 

accordance with the determination of the constants included in the 

simple boundary effect and boundary layer characteristic solutions. 

In 1.6, the problem of torsion of a radially inhomogeneous 

transversal-isotropic small-thickness spherical cover (3), (6), (8) is 

studied, where the lateral surface is free of load, and the boundary 

conditions that keep it in equilibrium at its seats are given. It is shown 

that the general solution of the problem consists of the sum of the 

spreading solution, which is proportional to the torsional moment of the 

stress acting on the const  cross-sections, and the localized 

boundary layer solutions in the conical sections. In contrast to the 

isotropic inhomogeneous spherical coating, it is determined that some 

boundary layer characteristic solutions are weakly damped in a small-

thickness transversal-isotropic inhomogeneous spherical coating. 

In 1.7 solving numerically the boundary value problems for a 

radial inhomogeneous and homogeneous transversally isotropic 

spherica shell, distribution of displacement vector and stress tensor 

components along the radius, is studied. 

In  1.8, the axisymmetric problem of elasticity theory is studied 

for a transverse-isotropic radial inhomogeneous spherical cover with 

a small thickness, whose lateral surface is closed, and the boundary 

conditions that keep it in equilibrium at its seats (conic sections) are 

given. It is shown that the homogeneous solution consists only of the 

boundary layer solution. 

Chgapter II is called ”Asymptotic analysis of dynamic 

problems of elasticity theory for a transversally-isotropic spherical 

shell”. Here we give asymptotic analysis of dynamical problem for a 

small-thickness transversally-isotropic spherical shell. 
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In 2.1 we state a dynamical problem of elasticity theory 

symmetric with respect to the axis for a small-thickness transversally 

isotropic spherical shell with volume  

 ]2;0[],;[],;[ 2121   rrr  and with no 0 ,   poles.                                                          

The expression of the equation of motion in coordinate system 

with displacements is as follows : 

 
















2

2

112

2

11
11

2











 u
b

u
b  

    






































1
12 122322122

2

bubbbctg
uu

 

 
 





























2

2

232212

2

1
1









 bbb

u
ctg

u
 

2

2

2






























u
ctgu

u
,                          (33) 

 















2

2

2

2

11

2











 uu
 

  



































 

 


uctgbbctg
uu

b 22
22232

2

22  

   
 

.
1

2
1

1
2

2
2

2

2

2322

2

12









 




















uu
bb

u
b    

(34)
 

Here
 

0

0

r

rr





  is a new pure variable, 

g

A

r

t 44

0

  is a dimensionless 

time; 
0

12

2r

rr 
 is a small parameter characterizing the thickness of the 

spherical shell; 
2

21
0

rr
r


  is a radius of the mediam surface of the 

spherical shell; g  is the density of the spherical shell material; 
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 1;1 ;  ,,,  uu     ,,uu   are displacement vector 

components.  

 It is assumed that the lateral surface of the cylindrical shell is 

free from stresses:    

                                    





















































































,0
1

11

,02
1

1

1

1

12
11

























u
uu

u
uctgu

bu
b

     (35)                                               

and the boundary conditions 

     2;1,, 21 


sefef i
s

i
s

ss






         (36) 

are given on the seats (conic sections) of the spherical shell (here   

is vibration frequency). 

The solution of the boundary value problem (33)-(35) is sought 

in the form of
 

    ,
  iemau         ,

  iemcu                  (37)
 

Substituting  (37) in (33)-(35) as a result we obtain the 

following spectral problem  

     
























4

1
2

1

2 2
2322121111 zbbbabab 




  

 
   

 




























2

2

231222
222

2
1

1
4

1

1

1







bbbza  

      ,0
1

1 12 






 




 cbc                         ( 38) 

   
 

 





























 







 cbbzcc 2

22322
22

1

1
2

4

5

1

2
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   
 

    ,02
1

1
1

23222

2

12 





 








abbab         ( 39) 

      ,0
4

1
2

1
1

2
1211 



































 czabab         (40) 

       0
1

1




















 cac                     ( 41) 

In 2.2 as 0  the spectral problem (38)-(41) is studied for 

finite   by the asymptotic integration method. The following 

asymptotic expressions are obtained for the amplitude values of 

displacement vector components: 

1)                                 2
2

10 zzzz       

   ,
4

12

1
2

2
01

2)(






















k
kkk

a mOtztTu               (42) 

    ,
2

1
3

)(




k

kk
a

mOtTu                              (43) 

 here 

  ,
4

1

4

3
635

241

43
2

2
2
0 











ttttttz k              (44) 

 According to (44) mainly two numbers are determined as real 

or two numbers are determined as purely imaginary kz0 . The purely 

imaginary  kz0  determine the extended solutions.    

2)                           


2
2

10
2

1

z     

   ),()(2
4

1

2
023

4
02

)(  k
k

kkk
a mOtttBu 



            (45) 

  



4

1

7

2

9

2

023

4

02

)( 2
k

kkk

a tttttBu   

   ,
3

1 2
03

4
02  kkk mOtt 





                       (46) 
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here 

  .223 2
211

2
1231122111

2
2

1
11

4
0  tbbtbbbttbk   (47) 

From (47) we determine four complex roots or two real, two 

purely imaginary roots. The complex roots correspond to the 

damping solution that is the analog of a simple boundary effect in the 

shell statics, the real roots to the expanded solution.    

3)  

  
kkkz 10

1  (48) 

1. 0,0 2
2
11  eee , 

   2,1;1 2
2
1

1
1 


keeeS

k
k

We obtain the following two groups for the displacements : 

a)       

          





1

1020
2
21112

3
02112

1 coscos1
k

kkkk
a SSSbbSSbDu   

         ,coscos 2010
2
11112  kkk mOSSSbb  (49) 

          





1

2010
2
21112

2
1112

2
0

1 cossin1
k

kkkk
a SSSbbSbSDu 

          ,sincos1 2010
2
211

2
111121  kkk mOSSSbSbbS     (50) 

here k0  are the solutions of the equation   

          0sinsin 0212102121  kk SSSSSSSS 

b)  

          





1

2010
2
21112

3
02112

2 sinsin1
k

kkkk
a SSSbbSSbDu 

         ,sinsin 1020
2
11112  kkk mOSSSbb    (51) 

          





1

2010
2
21112

2
1112

2
0

2 sincos1
k

kkkk
a SSSbbSbSDu   

          ,sincos1 1020
2
11112

2
2111  kkk mOSSSbbSbS     (52) 

here k0  are the solutions of the equation 

          0sinsin 0212102121  kk SSSSSSSS  ,
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2. For 2
2
11 ,0 eee   ,  

.1eS   

 for the displacements we obtain :   

a)               

         





1

0
2

111200
2

11
1 coscos2

k
kkkk

a SSbbSSSbQu   

            ,sincoscossin 0000  kkkkk mOSSSS     (53) 

      



 









1 12

12
2

11
2

111

1

1

k
k

a

b

bSbSb
Qu  

          SSSS kkkk 0000 coscossinsin  

 
 

       ,sincos
1

3
00

120

12
2

111211
42

11 


kkk

k

mOSS
bS

bSbbbSb










         

(54) 

here  k0  are the solutions of the equation     

  022sin 00  SS kk                                         

b)            

           


1
0

2
111200

2
11

2 sinsin2
k

kkkk
a SSbbSSSbQu   

            ,cossinsincos 0000  kkkkk mOSSSS     (55) 

 

      
   



 









1
00

12

2
1112

2
112 coscos

1

1

k
kkk

a SS
b

SbbSb
Qu   

   
 
  Sb

bSbbbSb
SS

k

kk

012

12
2

111112
42

11
00

1

3
sinsin







  

       ,cossin 00  kkk mOSS                        (56) 

here  k0  are the solutions of the equation   

        022sin 00  SS kk                                         
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3. For 0,0 2
2
11  eee , 2

2
1

1
1 )1( eeeS k

k    for the 

displacements we obtain:   

a)            





1

2010
2
11112

3
02112

3 1
k

kkkk
a SchSchSbbSSbDu   

         ,1020
2
21112  kkk mOSchSchSbb                (57) 

          





1

2010
2
21112

2
1112

2
0

3 1
k

kkkk
a SchSshSbbSbSDu   

          ,1 2010
2
211

2
111121  kkk mOSshSchSbSbbS       (58) 

here k0  are the solutions of the equation 

          ,00212102121  kk SSshSSSSshSS   

b) 
          






1

1020
2
21112

3
02112

4 1
k

kkkk
a SshSshSbbSSbDu   

         ,2010
2
11112  kkk mOSshSshSbb               (59) 

          





1

20101
2
11112

2
211

2
0

4 1
k

kkkk
a SchSshSSbbSbDu   

          ,1 10202
2
21112

2
111  kkk mOSchSshSSbbSb       (60) 

here k0  are the solutions of the equation 

          ,00212102121  kk SSshSSSSshSS   

4. For 2
2
11 ,0 eee  , .1eS   for the displacements we 

obtain:   

a)           
         






1

000
2

1112
3

k
kkkk

a SshSchSSbbQu   

        kkk mOSchSsh  00 ,                    (61) 

      



 









1 12

2
1112

2
113

1

1

k
k

a

b

SbbSb
Qu  

          SchSchSshSsh kkkk 0000  
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 
 

       ,
1

3
00

120

12
2

111211
42

11 


kkk

k

mOSshSch
bS

bSbbbSb












(62) 

here  k0   are the solutions of the equation 

  022 00  SSsh kk   , 

b)     
         






1

000
2

1112
4

k
kkkk

a SchSshSSbbQu 

           ,2 00
2

1100  kkkkk mOSshSshSbSshSch    (63) 

      



 









1 12

2
1112

2
114

1

1

k
k

a

b

SbbSb
Qu  

          SshSshSchSch kkkk 0000

 
 

       ,
1

3
00

012

12
2

1211
42

11 


kkk

k

mOSchSsh
Sb

bSbbSb









    (64) 

here  k0  are the solutions of the equation 

        ,022 00  SSsh kk 

  22
1

112
1

112211
2
12121 ,22 bbebbbbbe   -dir. 

The solutions of (49)-(64) are of boundary layer character and these 

solutions are localized around the conic sections  2;1 jj .

 Boundary layer character solutions for k0  damp weakly, and 

these solutions are considered to be expanded solutions. When  k0

take purely imaginary and complex values, the stress strain state of a 

transversally isotropic cylindrical shell by its quality is identical to 

the stress-strain state of an isotropic spherical shell. 

We consider a high frequency vibration of a transversally-

isotropic spherical shell. As 0  we study the spectral problem 

(38)-(41) for   satisfying the condition  . As 0 this 

possible cases a)  ,  ,0 b)  , ,const c) 

, , are studied.
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Asymptotic expressions are derived for the amplitude values of 

the displacement vector and the components of the stress tensor. 

In 2.4 we study satisfaction of boundary conditions (36) in the 

seats of the spherical shell (in conic sections). For  ,1O  

     10,, 21     OO  the system of equations obtained 

for defining constants coincide with the finite system of linear 

algebraic equations obtained in the static problem of elasticity theory 

for a transversally isotropic cylindrical shell. For    1,    O  

the obtained system of infinite linear algebraic equations is identical 

to the system of linear algebraic equations obtained in dynamic 

problem of elasticity theory for an elastic strip. 

In 2.5, the issue of torsional oscillation of a transverse-isotropic 

spherical coating free from side surface load is studied. Asymptotics of 

the dispersion equation obtained as a result of satisfying the given 

homogeneous boundary conditions on the side surface are determined 

for frequencies that satisfy conditions )1(O  and   when the 

roots are 0 . Asymptotic expressions corresponding to those roots 

are determined for displacements and stresses. 

In 2.6, the problem of torsional vibration of a transverse-

isotropic spherical cover with a closed side surface is studied. The 

exact and asymptotic solution of the problem is established. 

Conclusion 

1. Asymptotic theory of a radial inhomogeneous small-thickness 

transversally-isotropic spherical shell whose elasticity modulus 

change with respect to the axis, is commented. A problem of elas-

ticity theory symmetric with respect to the axis is studied in the 

case when the lateral surface of a radial inhomogeneous transver-

sally-isotropic cylindrical shell is free from load. Homogeneous 

solutions are constructed and classified. It is shown that the homo-

geneous solution consists of the sum of the expanded solution 

equivalent to the principial vector of stresses acting in the section  

const  of the spherical shell, a boundary effect character soluti-

on determining the boundary effect in the applied theory of shells 
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and boundary effect character boundary layer localized around the 

seats of the spherical shell (of conic sections). 

2. A new class of solutions called boiundary layer character solutions 

that can not be described by the existing applied theories for a 

spherical shell, is determined. İt is shown that the stress-strain state 

can change far from the conic sections, where the boundary layer 

character solutions weakly damp spreading throughout the domain. 

3. A problem of elasticity theory symmetric with respect to the axis 

was studied for a transversally-isotropic radial inhomogeneous 

spherical shell with fixed lateral surface. 

4. The boundary value problems for a radial, inhomogeneous and 

homogeneous transversally-isotropic spherical shell were numeri-

cally solved; the distribution of the displacement vector and stress 

tensor components in radial direction, was studied. The influence 

of in homogeneity on the stress-strain state was estimated.  

5. A problem of torsion of an inhomogeneous transversally-isotropic 

spherical shell was studied for the case when the lateral surface of the 

spherical shell is free from load. It was obtained that the homogeneous 

solution consists of the expanded solution proportional to the torgue 

of the stresses acting in the section const  and a boundary layer 

character solutions damping exponentially moving away from the 

conic sections. The possibility of weakly damping boundary layer 

character solutions that make serious additions was specified.  

6. A problem of torsion of an inhomogeneous transversally-isotropic 

spherical shell was studied in the case when the lateral surface of 

the spherical shell is fixed. The character of the stress-strain state 

is determined. 

7. A dynamic problem of elasticity theory is studied by the asympto-

tic integration method for a small-thickness  transversally-isotropic 

spherical shell with a lateral surface free from the load. Asymp-

totic expressions that enable to calculate the stress-strain state of a 

transversally-isotropic spherical shell for finite and high frequencies, 

are determined. 

8. The torsional vibrations problems of a shell are studied in the case 

when the lateral surface of the transversally-isotropic spherical 

shell is free from load. The asymptotic of the roots of dispersion 
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equations obtained as a result of satisfaction of homogeneous 

boundary conditions on the lateral surface at small values of the 

parameter characterizing the thickness of the shell was determined 

for finite and high frequencies. Asymptotic expressions for stress 

tensor components and displacement corresponding to these roots, 

were constructed. 
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