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GENERAL DESCRIPTION OF WORK 

 

The relevance and elaboration degree of the topic. It is well 

known that the problems of optimal control for objects with distributed 

parameters with feedback have been studied much less in contrast to 

objects with lumped parameters. The first reason is the complexity of 

technical implementtation of systems which require information about 

the current state of the object (process) at all its points. The second is 

the existence of problems related to the solution of both structural and 

parametric identification problems of mathematical models for 

controlled objects, the developing efficient numerical methods and 

algorithms for solving corresponding mathematical problems. 

The end of the XIX – beginning of the XX century as a result of 

research were developed high-precision measuring devices for the 

controlling industrial processes and technical objects. In this regard, 

well-known researchers J.K. Maxwell, E.J. Raus, I.A. Vyshnegradskii, 

A. Hurvitz, A.M. Lyapunov and other scientists and engineers have 

made significant contributions to science. With the development of 

computational and measurement research tools in connection with the 

problems in the field of rocket development, L.S. Pontryagin, R.E. 

Bellman, A.M. Letov and other scientists the results of their research 

in the field of control systems with feedback for objects with lumped 

parameters described by ordinary differential equations have found 

wide applications. 

However, in recent years, research was actively conducted to 

extend approaches and methods available for systems with lumped 

parameters to control over objects with distributed parameters, 

including feedback control described by special derivative differential 

equations. The results of the research were used in the design of 

control and regulation systems for both technical objects and complex 

industrial processes. Despite certain achieved successes, control 

synthesis problems for objects with distributed parameters have not 

yet received widespread application. This is due both to problems of 

theoretical nature (e.g., due to the study of controllability, 

observability, development of efficient numerical methods for 

optimizing the control in the corresponding processes) and with the 
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problems of technical implementation of control systems for these 

objects with feedback (due to spatial extent, inability to obtain 

sufficiently up-to-date and accurate information about the current state 

from all points of the object, as well as the inability to timely 

implement their control influences distributed in all or some of the 

points of the object, and other factors). Therefore, it is important to 

conduct research in this area at this time. At present, automatic control 

and regulation systems are being developed or are already operating 

for many objects with distributed parameters using various known 

principles, computational methods, and technical means of 

telemechanical control. 

In recent years, due to the development of information, computer 

technologies and the high-precision control and measurement 

echnologies, there has been a rise in interest in the creation of 

automatic control and regulation systems for complicated distributed 

parameter objects described by various types of functional equations 

with initial-boundary conditions. 

It is known that in optimal control theory, program control is sought 

as a time-dependent function for dynamic systems. These types of 

control problems describe and is used to solve practical problems in a 

relatively narrow range, such as space flight or rocket direction 

control. However, there are many factors and influences that hinder 

the better application of optimal control theory for certain problems. 

For example, in many cases there are unavoidable uncertainties due to 

the inaccuracy of the initial conditions, the very complexity, or 

sometimes the impossibility of accurately defining the parameters of 

the model. It is obvious that, the need to establish a control strategy in 

advance is highly undesirable. For this reason, it is more natural for 

engineers to choose control as a function of feedback (synthesis) as a 

function of the current state of the system. 

In some optimal control synthesis problems, the phase state of the 

process is expressed by both “point-wise” or “integral” loaded 

differential equations for time or space variables, boundary conditions 

are brought to the initial-boundary problems given by non-local 

separated intermediate conditions. The description of a large number 

of technological processes brought to non-local problems by 
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differential equations loaded with partial derivatives has attracted the 

attention of many researchers working in this field in recent years. 

Examples of such processes are the synthesis with feedback control, 

the heating of the plate installed on measuring devices with point-wise 

heat sources, and the dampinging of the oscillations of the membrane, 

which becomes oscillating under the influence of certain external 

blows, with point-wise influence. 

Much work has been devoted to the optimal control of the lumped 

parameter systems, both theoretically and numerically aspects. From 

these, in works of  F.M. Kirillova, L.S. Pontryagin, R.E. Bellman, 

V.Q. Boltyansky, N.N. Krasovsky, F.P. Vasiliev, R.F. Gabasov, R.P. 

Fedorenko, and in our republic M.C. Mardanov, K.B. Mansimov, T.Q. 

Malikov, I.G. Mammadov, Y.A. Sharifov, Sh.F. Maharramov and 

others necessary and sufficient conditions have been obtained for 

optimal control problems considered in their work. Obtaining the 

necessary conditions and the development of numerical methods using 

them Y.Q. Yevtuşenko, N.N. Moiseev, A.A. Abramov, O.O. 

Vasilieva, in our republic F.A. Aliyev, M.M. Mutallimov, K.R. Aida-

zade, V.M. Abdullaev, A.B. Rahimov and the work of other scientists 

can be noted. 

In most practical problems, many processes are described by 

distributed parameter systems. Many scientists have studied the 

optimal control problems for these systems. From these the theory of 

quality of optimal control works of J.L. Lions, V.Q. Boltyansky, F.P. 

Vasiliev, A.İ. Egorov,  A.D. Isgandarov, K.Q. Hasanov, H.F. Guliyev, 

K.B. Mansimov, F.G. Feyziyev, M.H. Yagubov, M.A. Sadıqov, R.Q. 

Tagıyev, S.S. Hakhıyev, Sh. Sh. Yusubov, E.N. Mahmudov, and 

development of numerical methods F.A. Aliev, K.R. Aida-zade, V.M. 

Abdullaev, Y.R. Ashrafova, A.B. Rahimov, S.Z. Guliyev, J.A. 

Asadova, S.G. Talibov and the work of other scientists can be noted. 

Many scientists have paid attention at their researches with the 

widely applied use of feedback optimal control systems, where we can 

show researches by V.I. Utkin,  T.K. Sirazetdinov, A. I. Egorov, A.G. 

Butkovsky, B.T. Polyak and other scientists. This direction was also 

paid to the attention of Azerbaijani scientists and many studies were 

carried out. From these wee can show the work of K.R. Aidazade, 
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V.M. Abdullaev, S.Z. Guliev, Q.A. Rustamov and many other 

scientists. 

Despite the fact that computer technology is developing very 

rapidly, that there are many problems in computational mathematics, 

the development of more accurate and faster the development of 

numerical methods remains relevant. For example, the system of 

ordinary differential equations, given on non-local conditions, is 

considered one of the most important classes of computational 

mathematics. In these problems, the development of numerical 

solution schemes by approximation of derivatives from high-precision 

order in the methods of numerical solution of differential equations is 

of practical importance. For the development of such numerical 

solution schemes we can especially mention the works of G.Y. 

Mehdieva, V.R. Ibrahimov, K.R. Aida-zade, V.M. Abdullayev and 

other scientists. 

Object and subject of research. The object of research of the 

dissertation is mainly the control of distributed parameter systems in 

relation to the lumped (point-wise) sources. The subject of the research 

is the first-order effective numerical optimization methods for the 

synthesis of lumped control sources and measurement points with 

which feedback is conducted, as well as linear feedback parameters. 

The main goal and problems of research. The main objective 

of the work is as follows:  

1. Development of numerical solutions to the problems of synthesis 

of feedback control systems in distributed parameter systems. 

2. Obtaining the gradient of the objective function for the optimal 

coordinates of the locations of the measurement points and the 

parameters of linear feedback in the case of extinguishing the 

oscillations of the elastic membrane, heating a homogeneous rod 

or a thin plate. 

3. Obtaining the gradient of the objective function for the optimal 

coordinates of the point-wise of impact of the lumped vibration 

dampers or moments of impact time in the case of extinguishing 

the vibrations of the membrane. 

4. Obtaining gradient of the objective function for the optimal 

coordinates of the points of point-wise heat sources in the heating 
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of plate. 

5. Consideration of the synthesis of optimal control as a “group” 

when the initial values of rod or plate heating, or initial membrane 

oscillation influences on the oscillation process are not known, but 

the sets in which their values are included and the distribution 

functions in these sets are given. 

6. Development of numerical methods with the application of high-

order approximation schemas of linear ordinary differential 

equations with non-local intermediate conditions. 

7. Approximation of the pulse effects in lumped parameter systems 

or lumped (point-wise) sources in distributed parameter systems 

with a continuous smooth function, described by one-dimensional 

or two-dimensional 𝛿(𝑥)-function of Dirac. 

8. Development of software packages based on algorithms and 

numerical methods for computer experiments. 

The main research methods. In the dissertation loaded partial 

differential equations, optimal control, numerical methods of finite-

dimensional optimization, numerical methods for initial-boundary 

value problems for both point-wise and integral meaning loaded 

partial derivative equations, specially for two-dimensional space 

variables changing direction method, linear ordinary differential 

equations with non-local intermediate conditions, as well as object-

oriented programming languages used to solve very quickly extremal 

problems and to create software packages, were used. 

The main provisions to be defended are follows: 

1. Numerical methods of control and measurement point 

optimization problems in feedback optimal control problems; 

2. Solution of the problem of control synthesis in the calming of 

oscillations when the forces and points of influences of the initial 

oscillations of the membrane are given inaccurately; 

3. Solution the problem of synthesis of control in heating processes 

when the initial condition of the plate or ambient temperature is 

given inaccurately; 

4. High-order numerical methods of systems of linear ordinary 

differential equations given by non-local intermediate conditions; 

5. Approximation of lumped (point-wise) sources described by 𝛿(𝑥)-
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function of Dirac with continuous, smooth functions; 

6. Developing of software for conducting computer experiments with 

the application of the methods of the conjugate gradient, gradient 

projection, penalty functions methods to use the obtained first-

order necessary conditions. 

The scientific novelty. The main scientific innovations of the work 

are: 

1. The gradient of the objective function of the synthesized  

parameters in the optimal control problems with feedback of 

distributed parameter objects are obtained. 

2. The gradient of the objective function were obtained for the 

optimization of the coordinates of the location of the lumped 

sources and a given number of measurement points in the feedback 

control of the system in the distributed parameter objects. 

3. When the initial conditions of the controlled systems or the values 

of the environmental influences are not known in advance, but 

given their possible set of values and the distribution functions of 

the elements included in this set, the optimality conditions for 

feedback parameters are obtained. 

4. Numerical methods for linear ordinary differential equations with 

non-local intermediate conditions have been developed. 

5. Schemes of approximation of one-dimensional and two-

dimensional Dirac 𝛿(𝑥)-functions in the solution of initial-

boundary problems with ordinary and partial derivative 

differential equations using grid methods have been proposed and 

investigated.  

Theoretical and practical value of the study. In the research, in 

theoretically the first-order necessary conditions for the synthesis of 

feedback optimal control distributed parameter dynamic systems were 

obtained, which these results can be used in practical engineering 

optimal control and regulation problems. The proposed approaches 

can be used in the design of control systems and in the control and 

regulation of many other distributed parameter systems and objects. 

Approbation of the work. The main results of the work were 

presented in the following various international scientific conferences, 

both domestic and foreign, in personal or online form, as well as in 
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many scientific seminars. 

• in international conferences: 

“Прикладная математика и фундаментальная информатика” 

(RF, Omsk, 2017, 2018, 2019, 2020), “Актуальные проблемы 

прикладной математики и физики” (RF, Nalchik, 2017, 2018), 

“Математика, ее приложения и математическое образование” 

(RF, Ulan-Ude, Baykal, 2017), “Дифференциальные уравнения и 

смежные проблемы” (RF, Samara, 2017), “International Conference 

on Optimization Methods and Applications (OPTIMA-2017, 2018, 

2019, 2020)” (Montenegro, Petrovac), “Control and Optimization 

with Industrial Applications (COIA- 2018, 2020)” (Bakı), “Modern 

Problems of Mathematics and Mechanics” beynalxalq konfrans (Bakı, 

2019). 

• at scientific seminars:  

Reports on the topics “Qızdırılma prosesinin sərhəd idarəetməsinin 

sintezi məsələsinin tədqiqi”, “Optimization and control of placements 

of point dampers on the plate” (Bakı, 2017), “Lövhənin qızdırılması 

prosesində nöqtəvi ölçmələr və toplanmış istilik mənbələrinin 

yerləşməsinin optimallaşdırılması” (Bakı, 2018) were made at 

scientific seminars held at the “Optimal control” department of the 

Institute of Mathematics and Mechanics of ANAS 

Publications. 35 scientific works on the dissertation were 

published, of which 13 articles, including 11 in foreign countries, 22 

conference materials and theses, most of which were presented at 

influential conferences abroad and in our country. 5 articles are 

included in the Scopus database and 3 articles are included in the 

international database of Clarivate Analytics Web of ScienceTM Core 

Collection. 

Institution   where   the   dissertation   work   was   executed. 
Institute of Control Systems of Azerbaijan National Academy of 

Science. 

Structure and volume of the dissertation. The dissertation 

consists of 142 pages, 212881 characters, 7 tables and 10 figures, 

introduction, four chapters, the main result of the work, list of 113 

references used, appendix with the source code of the software. 
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CONTENT OF THE WORK 

 

The introduction provides detailed information on the relevance 

of the problems considered, the obtained scientific innovations, the 

theoretical and practical importance of the research, its approbation. 

The first chapter considers the problems of calming the 

oscillations processes of the thin elastic membrane in the optimal 

control of with lumped impact with both of the program and feedback 

in distributed parameter systems. In feedback control, the mode of 

operation of the stabilizers is determined linearly by measuring the 

condition of the membrane in the neighbourhood of the measurement 

points. 

Paragraph 1.1 sets out the optimal control of the membrane 

oscillation process. 

 𝑢𝑡𝑡(𝑥,𝑡) = 𝑎2ℒ𝑢(𝑥,𝑡) − 𝜆𝑢𝑡(𝑥,𝑡) + 𝑝(𝑥,𝑡) + (1) 

 

+ ∑ 𝜗𝑖(𝑡)𝛿(𝑥;𝒪𝜀𝑥
(𝜂𝑖))

𝑁

𝑖=1

,   𝑥 = (𝑥1,𝑥2) ∈ Ω,   𝑡 ∈ (0,𝑇], 

 𝑢(𝑥,0) = 𝜑0(𝑥),   𝑢𝑡(𝑥,0) = 𝜑1(𝑥),   𝑥 ∈ Ω, (2) 

 𝑢(𝑥,𝑡) = 𝜑2(𝑥,𝑡),   𝑥 ∈ Г,   𝑡 ∈ (0,𝑇], (3) 

here, 𝑢(𝑥, 𝑡) determines state of membrane at moment 𝑡 and on point 

𝑥 ∈ Ω; 𝑎2 > 0, 𝛾 ≥ 0 are given values; ℒ = 𝜕2 𝜕𝑥1
2⁄ + 𝜕2 𝜕𝑥2

2⁄  two-

dimentional Laplas operator; Ω ⊂ R2 is convex area with given bound 

Γ. 𝑝(𝑥, 𝑡) ∈ 𝐿2(Ω × [0,𝑇]), 𝜑0(𝑥) ∈ 𝐿2(Ω), 𝜑1(𝑥) ∈ 𝐿2(Ω), 

𝜑2(𝑥,𝑡) ∈ 𝐿2(Γ × [0,𝑇]) are defined given functions; 𝑁 is number of 

controled stabilizers. 𝜗(𝑡) = (𝜗1(𝑡),…,𝜗𝑁(𝑡)) ∈ 𝐿2
𝑁[0,𝑇] is vector 

function which determines the power of lumped stabilizers in 

sufficient small 휀𝑥 neighbourhood of locations of  𝜂 = (𝜂1,…,𝜂𝑁), 

𝜂𝑖 = (𝜂1
𝑖 ,𝜂2

𝑖 ) ∈ Ω, 𝑖 = 1,2,…,𝑁. 𝑇 is control time duration. 

The function 𝛿(𝑥;𝒪𝜀(�̃�)) which is continuous differentiable for 𝑥 ∈
Ω is determines the distribution of source power around of point �̃� ∈
Ω in 𝒪𝜀𝑥

(�̃�) and has following features: 

 
𝛿(𝑥;𝒪𝜀𝑥

(�̃�)) {
≥ 0, when 𝑥 ∈ 𝒪𝜀𝑥

(�̃�),

= 0, when 𝑥 ∉ 𝒪𝜀𝑥
(�̃�),
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∬ 𝛿(𝑥;𝒪𝜀𝑥

(�̃�)) 𝑑𝑥

Ω

= ∬ 𝛿(𝑥;𝒪𝜀𝑥
(�̃�)) 𝑑𝑥

𝒪𝜀𝑥
(�̃�)

= 1,   �̃� ∈ Ω. 
 

The problem is to determine the location of the control influences 

𝜂 and the power of controls 𝜗(𝑡) that meet certain technological 

limitations, 

 𝜂𝑖 ∈ Ω𝑖 ⊂ Ω,   𝑖 = 1,2,…,𝑁, (4) 

 𝜗𝑖 ≤ 𝜗𝑖(𝑡) ≤ 𝜗𝑖,  almost everyone 𝑡 ∈ [0,𝑇], (5) 

get the following functional minimum value in the shortest 𝑇 time. 

ℐ𝑇(𝜗,𝜂) = 𝛼1 ∬[𝑢(𝑥,𝑇) − 𝑈1(𝑥)]2 𝑑𝑥

Ω

+ (6) 

+𝛼2 ∬[𝑢𝑡(𝑥,𝑇) − 𝑈2(𝑥)]2 𝑑𝑥

Ω

.  

Here, 𝑈1(𝑥), 𝑈2(𝑥) are the given functions, 𝛼1 > 0, 𝛼2 > 0 are 

appropriate weight coefficients. 

In paragraph 1.2 the necessary conditions for the optimality of the 

control parameters of the function (6) are obtained. 

Theorem 1. In conditions of (1)–(5) for each duration of time 𝑇  𝜂 

control point locations and 𝜗 = 𝜗(𝑡) control influences for the 

functional (6) following formulas for component of gradient are true: 

 
grad𝜗𝑖(𝑡)ℐ𝑇(𝜗,𝜂) = − ∬ 𝜓(𝑥,𝑡)𝛿(𝑥;𝒪𝜀𝑥

(𝜂𝑖))

𝒪𝜀𝑥(𝜂𝑖)

𝑑𝑥, 
 

grad𝜂𝑠
𝑖 ℐ𝑇(𝜗,𝜂) = − ∫ ∬ 𝜗𝑖(𝑡)𝜓𝑥𝑠

(𝑥,𝑡)𝛿(𝑥;𝒪𝜀𝑥
(𝜂𝑖))𝑑𝑥

𝒪𝜀𝑥(𝜂𝑖)

𝑇

0

𝑑𝑡, 

𝑖 = 1,2,…,𝑁, 𝑠 = 1,2. Here function 𝜓(𝑥, 𝑡) is the solution of 

following adjoint boundary value problem:: 
 𝜓𝑡𝑡(𝑥,𝑡) = 𝑎2ℒ𝜓(𝑥,𝑡) + 𝜆𝜓𝑡(𝑥,𝑡),    𝑥 ∈ Ω,   𝑡 ∈ [0,𝑇),  

 𝜓(𝑥,𝑇) = −2𝛼2[𝑢𝑡(𝑥,𝑇) − 𝑈2(𝑥)],   𝑥 ∈ Ω,  

 𝜓𝑡(𝑥,𝑇) = 2𝛼1[𝑢(𝑥,𝑇) − 𝑈1(𝑥)] + 𝜆𝜓(𝑥,𝑇),   𝑥 ∈ Ω,  

 𝜓(𝑥,𝑡) = 0,   𝑥 ∈ Г,   𝑡 ∈ [0,𝑇).  

Theorem 2. If (𝜗∗(𝑡), 𝜂∗) is the local minimum of the problem (1)–

(3), (4), (5), (6), then for the satisfing conditions (4) and (5) arbitrary 

parameters (𝜗(𝑡), 𝜂)  
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∑ ∫ ∬ 𝜓(𝑥,𝑡)𝛿(𝑥;𝒪𝜀𝑥
(𝜂𝑖∗))(𝜗𝑖(𝑡) − 𝜗𝑖

∗(𝑡))

𝑂𝜀𝑥(𝜂𝑖∗)

𝑑𝑥

𝑇

0

𝑑𝑡

𝑁

𝑖=1

+  

+ ∑ ∑ ∫ ∬ 𝜗𝑖
∗(𝑡)𝜓𝑥𝑠

(𝑥,𝑡)𝛿(𝑥;𝒪𝜀𝑥
(𝜂𝑖∗))(𝜂𝑠

𝑖 − 𝜂𝑠
𝑖,∗)𝑑𝑥

𝒪𝜀𝑥(𝜂𝑖∗)

𝑑𝑡

𝑇

0

2

𝑠=1

𝑁

𝑖=1

≤ 0 

it is necessary satisfing of inequality. 

Paragraph 1.3 we consider the problem of suppressing the 

transverse vibrations of a thin homogeneous membrane of given shape 

restrained along the boundary. The vibrations are assumed to be 

generated by external disturbances at the initial time in a neighborhood 

of the membrane points 𝜃𝜈, 𝜈 = 1,2,…,𝐿. The vibrations are 

suppressed by stabilizers affecting neighborhoods of the membrane 

points 𝜂𝑖, 𝑖 = 1,2,…,𝑁𝑐 in neighborhoods of given time moments 𝜏𝑠, 

𝑠 = 1,2,…,𝑁𝑡. The operation modes of the stabilizers are determined 

using the current membrane displacements measured by sensors 

placed in a neighborhood of the points 𝜉𝑗, 𝑗 = 1,2,…,𝑁𝑜. 

For 𝑡 > 0 this process can be described by the initial-boundary 

value problem: 

 𝑢𝑡𝑡(𝑥, 𝑡) = 𝑎2ℒ𝑢(𝑥, 𝑡) − 𝜆𝑢𝑡(𝑥, 𝑡) + (7) 

 

+ ∑ 𝛿(𝑡; 𝒪𝜀𝑡
(𝜏𝑠)) ∑ 𝜗𝑠

𝑖𝛿(𝑥; 𝒪𝜀𝑥
(𝜂𝑖))

𝑁𝑐

𝑖=1

𝑁𝑡

𝑠=1

,   𝑥 = (𝑥1,𝑥2) ∈ Ω,  

 

𝑢(𝑥,0) = 0,   𝑢𝑡(𝑥,0) = ∑ 𝑞𝜈𝛿(𝑥; 𝒪𝜀𝑥
(𝜃𝜈))

𝐿

𝜈=1

,   𝑥 ∈ Ω, (8) 

 𝑢(𝑥, 𝑡) = 0,   𝑥 ∈ Γ, (9) 

here, the function 𝑢(𝑥, 𝑡) determines the displacement of the membrane 

at the point 𝑥 ∈ Ω ⊂ R2 at the time moment 𝑡; 𝑎2, 𝜆 ≥ 0 are given 

constants; Γ is the almost verywhere smooth boundary of the domain 

Ω; 𝑞𝜈 is the intensity of the 𝜈-th external disturbance lumped in an 

neighborhood of the membrane point 𝜃𝜈 = (𝜃1
𝜈,𝜃2

𝜈) ∈ Ω, 𝜈 =
1,2,…,𝐿; where 𝐿 is the number of such points; 𝜗 =

(𝜗1
1,…,𝜗1

𝑁𝑐,…,𝜗𝑁𝑡

1 ,…,𝜗𝑁𝑡

𝑁𝑐) ∈ R𝑁𝑡𝑁𝑐 is the vector determining control 

functions of stabilizers on the neighborhood of the points 𝜂𝑖 =
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(𝜂1
𝑖 ,𝜂2

𝑖 ) ∈ Ω, 𝑖 = 1,2,…,𝑁𝑐, 𝜂 = (𝜂1,𝜂2,…,𝜂𝑁𝑐), 𝜏 = (𝜏1,𝜏2,…,𝜏𝑁𝑡
) 

are given moments of time in the neighborhood of which vibration 

suppression is applied, where, 𝜏𝑠 > 𝜏𝑠−1 > 0, 𝑠 = 1,2,…,𝑁𝑡, 𝜏0 = 0, 

𝜏𝑁𝑡
= 𝑇𝑓; 𝑁𝑡 is the number of time moments and 𝑇𝑓 is a given duration 

of the control process. 

Suppose that the power 𝑞𝜈 of the external sources and their location 

points 𝜃𝜈, 𝜈 = 1,2,…,𝑁𝑏 are known inexactly, but their possible sets 

𝑄𝜈 and Θ𝜈, and the distribution functions 𝜌𝑄𝜈(𝑞) ≥ 0, 𝜌Θ𝜈(𝜃) ≥ 0 are 

given in these sets. 

The intensities 𝜗𝑠
𝑖 of the control influences and their location points 

𝜂𝑖 are the parameters to be optimized in the considered control process 

of vibration extinguishing. They satisfy the constraints: 

 𝜗𝑖 ≤ 𝜗𝑠
𝑖 ≤ 𝜗𝑖,   𝑖 = 1,2,…,𝑁𝑐,   𝑠 = 1,2,…,𝑁𝑡, (10) 

 𝜂𝑖 ∈ 𝒪𝜀𝑥
(𝜂𝑖) ⊂ Ω𝑐

𝑖 ⊂ Ω,   𝑖 = 1,2,…,𝑁𝑐, (11) 

In (11) Ω𝑐
𝑖  are given closed subdomains in which stabilizers can be 

placed; 𝜗𝑖 and  𝜗𝑖 are given, 𝑖 = 1,2,…,𝑁𝑐. 

Let us determine the current values of the influences as follows, 

which determine the feedback on the state of the membrane at the 

measuring points of the control effects: 

�̂�𝑠
𝑗

= ∫ ∬ 𝑢(�̂�,�̂�)𝛿(�̂�;𝒪𝜀𝑥
(𝜉𝑗))𝛿(�̂�;𝒪𝜀𝑡

(𝜏𝑠)) 𝑑�̂�

𝒪𝜀𝑥(𝜉𝑗)

𝑑�̂�

𝒪𝜀𝑡
(𝜏𝑠)

, 
(10) 

𝜗𝑠
𝑖 = ∑ 𝑘𝑖

𝑗
[ ∫ ∬ 𝑢(�̂�,�̂�)𝛿(�̂�;𝒪𝜀𝑥

(𝜉𝑗))𝛿(�̂�;𝒪𝜀𝑡
(𝜏𝑠)) 𝑑�̂�

𝒪𝜀(𝜉𝑗)

𝑑�̂�

𝒪𝜀𝑡(𝜏𝑠)

− 𝑧𝑖
𝑗
]

𝑁𝑜

𝑗=1

, (11) 

𝑖 = 1,2,…,𝑁𝑐, 𝑗 = 1,2,…,𝑁𝑜, 𝑠 = 1,2,…,𝑁𝑡. Here, 𝑘 = ((𝑘𝑖
𝑗)) is the 

gain matrix; 𝑧 = ((𝑧𝑖
𝑗)), where 𝑧𝑖

𝑗
 is the nominal membrane 

displacement at the point 𝜉𝑗 relative to the stabilizer placed at the point 

𝜂𝑖, 𝑖 = 1,2, … , 𝑁𝑐, 𝑗 = 1,2, … , 𝑁𝑜; 𝑘, 𝑧 are the feedback parameters to 

be optimized. 

Substituting formula (11) into  equation (7) yields: 

𝑢𝑡𝑡(𝑥,𝑡) = 𝑎2ℒ𝑢(𝑥,𝑡) − 𝜆𝑢𝑡(𝑥,𝑡) + ∑ 𝛿(𝑡;𝒪𝜀𝑡
(𝜏𝑠)) ∑ 𝛿(𝑥;𝒪𝜀𝑥

(𝜂𝑖))

𝑁𝑐

𝑖=1

𝑁𝑡

𝑠=1

× 
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× ∑ 𝑘𝑖
𝑗

[ ∫ ∬ 𝑢(𝑥,�̂�)𝛿(𝑥;𝒪𝜀𝑥
(𝜉𝑗))𝛿(�̂�;𝒪𝜀𝑡

(𝜏𝑠)) 𝑑𝑥

𝒪𝜀𝑥(𝜉𝑗)

𝑑�̂�

𝒪𝜀𝑡
(𝜏𝑠)

− 𝑧𝑖
𝑗
]

𝑁𝑜

𝑗=1

, (14) 

𝑥 ∈ Ω.  

Devices for measuring the condition of a membrane cannot be 

placed at all its points, only at certain altoblasts: 

 𝜉𝑗 ∈ 𝒪𝜀𝑥
(𝜉𝑗) ⊂ Ω𝑜

𝑗
⊂ Ω,   𝑗 = 1,2, … , 𝑁𝑜, (15) 

and subdomains of the locations of the stabilizer and the of the 

measuring points may not intersect according to the conditions (11) 

and (15), i.e.  

 Ω𝑐
𝑖 ∩ Ω𝑜

𝑗
= ∅,    𝑖 = 1,2, … , 𝑁𝑐,    𝑗 = 1,2, … , 𝑁𝑜.  

The purpose of the matter under consideration is to control the 

process of calming the oscillations of the membrane 𝑘 ∈ R𝑁𝑐𝑁𝑜, 𝑧 ∈

R𝑁𝑐𝑁𝑜 feedback parameters, 𝜉 measurement və 𝜂 consists of 

determining the optimal values of the locations of the soothing points. 

Finite-dimensional 𝑦 = (𝑘, 𝑧, 𝜉, 𝜂) total size of synthesized parameter 

vector is equal to 𝑁 = 2(𝑁𝑐𝑁𝑜 + 𝑁𝑐 + 𝑁𝑜), that is, 𝑦 ∈ R𝑁. 

Enter quality criteria for the control parameters defined by the 

functions: 

 
ℐ(𝑦) = ∫ ∬ 𝐼(𝑦;𝑞,𝜃)𝜌Θ(𝜃)𝜌𝑄(𝑞) 𝑑𝜃

Θ

𝑑𝑞

𝑄

, (16) 

𝐼(𝑦;𝑞,𝜃) = ∫ ∬ 𝜇(𝑥)[𝑢(𝑥,𝑡;𝑦,𝑞,𝜃)]2 𝑑𝑥

Ω

𝑑𝑡

𝑇1

𝑇𝑓

+ ℜ(𝑦;휀), (17) 

ℜ(𝑦;휀) = 휀1‖𝑘 − �̂�‖
R𝑁𝑐𝑁𝑜

2
+ 휀2‖𝑧 − �̂�‖

R𝑁𝑐𝑁𝑜
2 + 

+휀3‖𝜉 − 𝜉‖
R2𝑁𝑜

2
+ 휀4‖𝜂 − �̂�‖

R2𝑁𝑐
2 , 

here, 휀 = (휀1,휀2,휀3,휀4), 휀𝑖 ≥ 0, 𝑖 = 1,2, … ,4, �̂� ∈ R𝑁𝑐𝑁𝑜, �̂� ∈ R𝑁𝑐𝑁𝑜, 

𝜉 ∈ R2𝑁𝑜, �̂� ∈ R2𝑁𝑐 are regulation parameters. 

We use penalty functions taking into account the constraints (10) in 

in the optimization of the feedback parameters 𝑦. (16) To the integral 

(17) functionality of the objective functionality, the addition of a 

penalty term: 
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ℐ̃(𝑦) = ∫ ∬ 𝐼(𝑦;𝑞,𝜃)𝜌Θ(𝜃)𝜌𝑄(𝑞) 𝑑𝜃

Θ

𝑑𝑞

𝑄

, (18) 

 𝐼(𝑦;𝑞,𝜃) = 𝐼(𝑦;𝑞,𝜃) + ℛ𝐺(𝑦). (19) 

Here, we used the following notation: 

 

𝐺(𝑦) = ∑ ∑[𝑔𝑖
+(𝜏𝑠;𝑦)]2

𝑁𝑐

𝑖=1

𝑁𝑡

𝑠=1

, 

 

𝑔𝑖
+(𝜏𝑠;𝑦) = {

0, 𝑔𝑖(𝜏𝑠;𝑦) ≤ 0,

𝑔𝑖(𝜏𝑠;𝑦), 𝑔𝑖(𝜏𝑠;𝑦) > 0, 𝑖 = 1,2,…,𝑁𝑐,   𝑠 = 1,2,…,𝑁𝑡.
 

In (19) the parameter ℛ > 0 is the penalty coefficient, ℛ → +∞. 

Teorem 3. In the problem of (14), (8)–(11), (15), (18), (19) the 

components of the gradient of functional (18) with respect to the 

parameters 𝑦 = (𝑘, 𝑧, 𝜉, 𝜂) of linear feedback (12), (13) are given by 

the formulas: 

𝜕ℐ̃(𝑦)

𝜕𝑘𝑖
𝑗 = ∫ ∫ {− ∑ [ ∫ ∬ 𝑢(𝑥,�̂�)𝛿(𝑥;𝒪𝜀𝑥

(𝜉𝑗))𝛿(�̂�;𝒪𝜀𝑡
(𝜏𝑠)) 𝑑𝑥

𝒪𝜀𝑥(𝜉𝑗)

𝑑�̂�

𝒪𝜀𝑡
(𝜏𝑠)

− 𝑧𝑖
𝑗
]

𝑁𝑡

𝑠=1Θ𝑄

× 

× [ ∫ ∬ 𝜓(𝑥,𝑡)𝛿(𝑥;𝒪𝜀𝑥
(𝜂𝑖))𝛿(𝑡;𝒪𝜀𝑡

(𝜏𝑠)) 𝑑𝑥

𝒪𝜀𝑥(𝜂𝑖)𝒪𝜀𝑡
(𝜏𝑠)

𝑑𝑡 + 

∫ + 2ℛ𝑔𝑖
+(𝜏𝑠;𝑦) sgn (𝑔𝑖

0(𝜏𝑠;𝑦))] + 2휀1(𝑘𝑖
𝑗

− �̂�𝑖
𝑗
)} 𝜌Θ(𝜃)𝜌𝑄(𝑞) 𝑑𝜃 𝑑𝑞, 

𝜕ℐ̃(𝑦)

𝜕𝑧𝑖
𝑗

= ∫ ∬ {𝑘𝑖
𝑗

∑ [ ∫ ∬ 𝜓(𝑥,𝑡)𝛿(𝑥;𝒪𝜀𝑥
(𝜂𝑖))𝛿(𝑡;𝒪𝜀𝑡

(𝜏𝑠)) 𝑑𝑥

𝒪𝜀𝑥(𝜂𝑖)𝒪𝜀𝑡
(𝜏𝑠)

𝑑𝑡 + 

𝑁𝑡

𝑠=1Θ𝑄

 

∫ +2ℛ𝑔𝑖
+(𝜏𝑠;𝑦) sgn (𝑔𝑖

0(𝜏𝑠;𝑦))] + 2휀2(𝑧𝑖
𝑗

− �̂�𝑖
𝑗
)} 𝜌Θ(𝜃)𝜌𝑄(𝑞) 𝑑𝜃 𝑑𝑞, 

𝜕ℐ̃(𝑦)

𝜕𝜉𝛾
𝑗

= ∫ ∬ {− ∑ ∫ ∬ 𝑢𝑥𝛾
(�̂�,�̂�)𝛿(�̂�;𝒪𝜀𝑥

(𝜉𝑗))𝛿(�̂�;𝒪𝜀𝑡
(𝜏𝑠)) 𝑑�̂�

𝒪𝜀𝑥(𝜉𝑗)

𝑑�̂�

𝒪𝜀𝑡
(𝜏𝑠)

×

𝑁𝑡

𝑠=1

 

Θ𝑄

 

× ∑ 𝑘𝑖
𝑗

𝑁𝑐

𝑖=1

[ ∫ ∬ 𝜓(𝑥,𝑡)𝛿(𝑥;𝒪𝜀𝑥
(𝜂𝑖))𝛿(𝑡;𝒪𝜀𝑡

(𝜏𝑠)) 𝑑𝑥

𝒪𝜀𝑥(𝜂𝑖)𝒪𝜀𝑡
(𝜏𝑠)

𝑑𝑡 + 



 

16 

 

∫ + 2ℛ𝑔𝑖
+(𝜏𝑠;𝑦) sgn (𝑔𝑖

0(𝜏𝑠;𝑦))] + 2휀3(𝜉𝛾
𝑗

− 𝜉𝛾
𝑗
)} 𝜌Θ(𝜃)𝜌𝑄(𝑞) 𝑑𝜃 𝑑𝑞, 

𝜕ℐ̃(𝑦)

𝜕𝜂𝛾
𝑖

= ∫ ∬ {− ∑ ∫ ∬ 𝜓𝑥𝛾
(𝑥,𝑡)𝛿(𝑥;𝒪𝜀𝑥

(𝜂𝑖))𝛿(𝑡;𝒪𝜀𝑡
(𝜏𝑠)) 𝑑𝑥

𝒪𝜀𝑥(𝜂𝑖)𝒪𝜀𝑡
(𝜏𝑠)

𝑑𝑡

𝑁𝑡

𝑠=1

×

Θ𝑄

 

× ∑ 𝑘𝑖
𝑗

[ ∫ ∬ 𝑢(�̂�,�̂�)𝛿(�̂�;𝒪𝜀𝑥
(𝜉𝑗))𝛿(�̂�;𝒪𝜀𝑡

(𝜏𝑠)) 𝑑�̂�

𝒪𝜀𝑥(𝜉𝑗)

𝑑�̂�

𝒪𝜀𝑡
(𝜏𝑠)

− 𝑧𝑖
𝑗
]

𝑁𝑜

𝑗=1

+ 

 ∫ + 2휀4(𝜂𝛾
𝑖 − �̂�𝛾

𝑖 )} 𝜌Θ(𝜃)𝜌𝑄(𝑞) 𝑑𝜃 𝑑𝑞, 

𝑖 = 1,2, … , 𝑁𝑐, 𝑗 = 1,2, … , 𝑁𝑜, 𝛾 = 1,2. Here the function 𝜓(𝑥, 𝑡) is a 

solution of the adjoint initial-boundary value problem: 

𝜓𝑡𝑡(𝑥,𝑡) = 𝑎2ℒ𝜓(𝑥,𝑡) + 𝜆𝜓𝑡(𝑥,𝑡) − 2𝑢(𝑥,𝑡;𝑦,𝑞,𝜃)𝜒[𝑇𝑓,𝑇1](𝑡) + 

+ ∑ 𝛿(𝑡;𝒪𝜀𝑡
(𝜏𝑠))

𝑁𝑡

𝑠=1

∑ 𝛿(𝑥;𝒪𝜀𝑥
(𝜉𝑗))

𝑁𝑜

𝑗=1

× 

× ∑ 𝑘𝑖
𝑗

𝑁𝑐

𝑖=1

[ ∫ ∬ 𝜓(�̂�,�̂�)𝛿(�̂�;𝒪𝜀𝑥
(𝜂𝑖))𝛿(�̂�;𝒪𝜀𝑡

(𝜏𝑠)) 𝑑�̂�

𝒪𝜀𝑥(𝜂𝑖)

𝑑�̂�

𝒪𝜀𝑡
(𝜏𝑠)

+  

+ 2𝑟𝑔𝑖
+(𝜏𝑠;𝑦) sgn (𝑔𝑖

0(𝜏𝑠;𝑦))] ,   𝑥 ∈ Ω,   𝑡 ∈ [0,𝑇1),  

 𝜓(𝑥,𝑇1) = 0,   𝜓𝑡(𝑥,𝑇1) = 0,   𝑥 ∈ Ω,  

 𝜓(𝑥,𝑡) = 0,   𝑥 ∈ Γ,   𝑡 ∈ [0,𝑇1).  

The second chapter the approach to the problem of optimal 

synthesis of feedback control of distributed parameter objects 

described by partial differential equations was studed. 

Paragraph 2.1 the synthesis of controls in the example of the rod 

heating process was considered.  

Let us consider the problem of controlling the process of successive 

heating homogeneous identical rods of length 𝑙 from the same end in 

succession. The setting of the heating process is given by the following 

initial-boundary problem: 
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 𝑢𝑡(𝑥,𝑡) = 𝑎2𝑢𝑥𝑥(𝑥,𝑡) − 𝜆0[𝑢(𝑥,𝑡) − 𝜃], (20) 

 (𝑥,𝑡) ∈ Ω = (0,𝑙) × (0,𝑇],  

 𝑢𝑥(0,𝑡) = 𝜆1[𝑢(0,𝑡) − 𝜗(𝑡)],   𝑡 ∈ (0,𝑇], (21) 

 𝑢𝑥(𝑙,𝑡) = −𝜆2[𝑢(𝑙,𝑡) − 𝜃],   𝑡 ∈ (0,𝑇]. (22) 

Here, 𝑢(𝑥, 𝑡) is the temperature of the rod at point 𝑥 at time 𝑡; 𝜃 =
const is the ambient temperature; 𝑎2 = const is thermal conductivity, 

𝜆0, 𝜆1 və 𝜆2 are given coefficients. 𝑇 is the duration of the process. 

𝜗 = 𝜗(𝑡) is the temperature of the control source, which is a piecewise 

continuous function of time and which satisfies technological 

constraints: 

 𝜗 ≤ 𝜗(𝑡) ≤ 𝜗,   𝑡 ∈ [0,𝑇], (23) 

here 𝜗 and 𝜗 are known. 

It is assumed that the initial temperature of the rods was not given 

in advance. However, the initial temperature value of each rod is 

constant along its length, and the distribution function 𝜌Φ(𝜑) ≥ 0 is 

known for this possible set Φ: 

 𝑢(𝑥,0) = 𝜑(𝑥) = 𝜑 = const ∈ Φ,   𝑥 ∈ [0,𝑙]. (24) 

The ambient temperature 𝜃 = const may also be set not exactly but 

rather defined by the set of possible values Θ with a given density 

function 𝜌Θ(𝜃) ≥ 0: 

 𝜃 ∈ Θ,   𝑡 ∈ [0,𝑇]. (25) 

Suppose that in 𝐿𝑥 points of the rod 𝜉𝑖 ∈ [0,𝑙], 𝑖 = 1,2,…,𝐿𝑥  

 𝑢𝑖(𝑡) = 𝑢(𝜉𝑖,𝑡),   𝑖 = 1,2,…,𝐿𝑥. (23) 

during the heating process the temperature is measured continuously 

in time. Here 

 0 ≤ 𝜉𝑖 ≤ 𝑙,   𝑖 = 1,2,…,𝐿𝑥, (26) 

𝜗(𝑡) the value of the boundary control is determined as the linear 

feedback of the results obtained from the measurement points based 

on the current state of the process. If the feedback is as continuous as 

(26), the control is determined by the following formula: 

 

𝜗(𝑡;𝑦) = ∑ 𝑘𝑖[𝑢(𝜉𝑖,𝑡) − 𝑧𝑖]

𝐿𝑥

𝑖=1

,   𝑡 ∈ [0,𝑇], (28) 

here, 𝑧𝑖 is the nominal value of the temperature at the 𝑖-th 

measurement point such that the deviation of the current state at this 
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point affects the control value; 𝑘𝑖 are gain coefficients, 𝑖 = 1,2,…,𝐿𝑥. 

𝑘 = (𝑘1,𝑘2,…,𝑘𝐿𝑥
), 𝑧 = (𝑧1,𝑧2,…,𝑧𝐿𝑥

), 𝜉 = (𝜉1,𝜉2,…,𝜉𝐿𝑥
), 𝑦 =

(𝑘,𝑧,𝜉)  below and in (28) we use the following notation. 

Substituting (28) into the boundary condition (21), 

𝑢𝑥(0,𝑡) = 𝜆1 (𝑢(0,𝑡) − ∑ 𝑘𝑖[𝑢(𝜉𝑖,𝑡) − 𝑧𝑖]

𝐿𝑥

𝑖=1

) ,   𝑡 ∈ (0,𝑇], (29) 

we obtain a nonlocal boundary condition with non-separated 

intermediate conditions. 

When the control of the heating process is carried out with 

continuous measurements over time (26), we can write the objective 

functions as follows: 

 
ℐ(𝑦) = ∫ ∫ 𝐼(𝑦;𝜑,𝜃)𝜌Φ(𝜑)

Φ

𝜌Θ(𝜃)𝑑𝜑 𝑑𝜃

Θ

, (30) 

 

𝐼(𝑦;𝜑,𝜃) = ∫ 𝜇(𝑥)[𝑢(𝑥,𝑇;𝑦,𝜑,𝜃) − 𝑈(𝑥)]2𝑑𝑥

𝑙

0

+ (31) 

 +휀‖𝑦 − �̂�‖
R3𝐿𝑥
2 .  

Synthesis of the finite-dimensional parameter vector 𝑦 ∈ R3𝐿𝑥 of 

control (25) with continuous (26) measurements (20), (29), (22), (24), 

(25), (30), (31) in the solution of the problem taking into account the 

constraint condition (23) and for the condition (27) for minimization 

will use with the application of the penalty functions and the gradient 

projection method. 

For simplicity, let's write the condition (23) as a new inequality in 

equivalent form: 

 𝑔(𝑡;𝑦) = 𝑑1 − |𝜗𝑑0
(𝑡;𝑦)| ≥ 0,   𝑡 ∈ [0,𝑇], (32) 

 𝜗𝑑0
(𝑡;𝑦) = 𝑑0 − 𝜗(𝑡;𝑦),   𝑑0 =

𝜗 + 𝜗

2
,   𝑑1 =

𝜗 − 𝜗

2
.  

We will use the internal penalty function (32) to take into account 

the conditions (23). In this case, we can write the minimized function 

(31) as follows: 

 𝐼(𝑦;𝜑,𝜃) = 𝐼(𝑦;𝜑,𝜃) + ℛ𝐺(𝑦), (33) 
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𝐺(𝑦) = ∫[min(0,𝑔(𝑡,𝑦))]2 𝑑𝑡

𝑇

0

, 

 

here, ℛ is the penalty factor and ℛ → +∞. 

Theorem 4.  The components of the gradient of the penalty 

functional (30), (33) according to the (28) continuous by synthesized 

feedback parameters of the in the initial-boundary value problem (20), 

(29), (22), (24), (25) are determined by the following formulas: 

𝜕ℐ(𝑦)

𝜕𝑘𝑖
= ∫ ∫ {∫[−𝜆1𝑎2𝜓(0,𝑡)(𝑢(𝜉𝑖,𝑡) − 𝑧𝑖) + 2ℛ(𝑢(𝜉𝑖,𝑡) − 𝑧𝑖)× 

𝑇

0ΦΘ

× sgn(𝜗𝑑0
(𝑡,𝑦)) min(0,𝑔(𝑡,𝑦))]𝑑𝑡 +2휀(𝑘𝑖 − �̂�𝑖)} 𝜌Φ(𝜑)𝜌Θ(𝜃)𝑑𝜑 𝑑𝜃 , 

𝜕ℐ(𝑦)

𝜕𝑧𝑖
= ∫ ∫ {∫[𝜆1𝑎2𝜓(0,𝑡)𝑘𝑖 −  

𝑇

0ΦΘ

− 2ℛ𝑘𝑖 sgn(𝜗𝑑0
(𝑡,𝑦)) min(0,𝑔(𝑡,𝑦))]𝑑𝑡 + 2휀(𝑧𝑖 − �̂�𝑖)} × 

×𝜌Φ(𝜑)𝜌Θ(𝜃)𝑑𝜑 𝑑𝜃 , 

𝜕ℐ(𝑦)

𝜕𝜉𝑖
= ∫ ∫ {∫[−𝜆1𝑎2𝜓(0,𝑡)𝑘𝑖𝑢𝑥(𝜉𝑖,𝑡) + 2ℛ𝑘𝑖𝑢𝑥(𝜉𝑖,𝑡) ×

𝑇

0ΦΘ

× sgn(𝜗𝑑0
(𝑡,𝑦)) min(0,𝑔(𝑡,𝑦))]𝑑𝑡 + 2휀(𝜉𝑖 − 𝜉𝑖)} 𝜌Φ(𝜑)𝜌Θ(𝜃)𝑑𝜑 𝑑𝜃 , 

𝑖 = 1,2,…,𝐿𝑥. Here, 𝜓(𝑥,𝑡) = 𝜓(𝑥,𝑡;𝑦,𝜑,𝜃) for all 𝑥 ∈ (𝜉𝑖,𝜉𝑖+1), 𝑖 =
0,1,…,𝐿𝑥, in intervals is the solution of the initial-boundary value 

problem 

 𝜓𝑡(𝑥,𝑡) = −𝑎2𝜓𝑥𝑥(𝑥,𝑡) + 𝜆0𝜓(𝑥,𝑡),  

 𝑥 ∈ (𝜉𝑖,𝜉𝑖+1),   𝑖 = 0,…,𝐿𝑥,   𝑡 ∈ [0,𝑇),  

 𝜓(𝑥,𝑇) = −2𝜇(𝑥)(𝑢(𝑥,𝑇) − 𝑈(𝑥)),   𝑥 ∈ [0,𝑙],  

 𝜓𝑥(0,𝑡) = 𝜆1𝜓(0,𝑡),   𝑡 ∈ [0,𝑇),  

 𝜓𝑥(𝑙,𝑡) = −𝜆2𝜓(𝑙,𝑡),   𝑡 ∈ [0,𝑇),  

but, in 𝜉𝑖 ∈ (0,𝑙), 𝑖 = 1,2,…,𝐿𝑥 the following conditions must be met 
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at observation points: 

 𝜓𝑥(𝜉𝑖
+,𝑡) = 𝜓𝑥(𝜉𝑖

−,𝑡) − 𝜆1𝜓(0,𝑡)𝑘𝑖 +  

 
+

2𝑘𝑖ℛ

𝑎2
sgn (𝜗𝑑0

(𝑡,𝑦)) min(0,𝑔(𝑡,𝑦)) ,   𝑖 = 1,2,…,𝐿𝑥, 
 

 𝜓(𝜉𝑖
+,𝑡) = 𝜓(𝜉𝑖

−,𝑡),   𝑖 = 1,2,…,𝐿𝑥.  

In paragraph 2.2 the optimization of control and measurement 

points, as well as linear feedback parameters, in the synthesis of 

control in the process of heating a thin plate with the given number of 

point-wise heat sources is considered. 

 𝑢𝑡(𝑥,𝑡) = 𝑎2 div(grad 𝑢(𝑥,𝑡)) − 𝜆0[𝑢(𝑥,𝑡) − 𝜃] + , (34) 

+ ∑ 𝜗𝑖(𝑡)𝛿(𝑥 − 𝜂𝑖)

𝑁𝑐 

𝑖=1

, 𝑥 = (𝑥1,𝑥2) ∈ Ω ⊂ R2,   𝑡 ∈ (0,𝑇],  

 𝑢(𝑥,0) = 𝜑(𝑥) = const ∈ Φ,   𝑥 ∈ Ω, (35) 

 
𝜕𝑢(𝑥,𝑡)

𝜕n
= 𝜆[𝑢(𝑥,𝑡) − 𝜃],   𝑥 ∈ Γ,   𝑡 ∈ (0,𝑇]. (36) 

Here, 𝑎2, 𝜆0, 𝜆 are given coefficients; Ω the boundary surrounding the 

plate Γ, n is internal normal to the plate Γ. 

Assume that the initial temperature 𝜑(𝑥) of the plate and the 

ambient temperature 𝜃 = const are not known exactly, the set of 

possible values of the initial temperature Φ ⊂ R and in this set the 

corresponding 𝜌Φ(𝜑) ≥ 0, the set of possible values of the ambient 

temperature Θ ⊂ R and distribution function 𝜌Φ(𝜑) ≥ 0 

corresponding to the values from these sets are known. 

Suppose that in the process of heating on the plate at 𝑁𝑜 points 𝑗 =
1, … , 𝑁𝑜 

 𝜉𝑗 = (𝜉1
𝑗
,𝜉2

𝑗
) ∈ Ω,   𝑎1 ≤ 𝜉1

𝑗
≤ 𝑎1,   𝑎2 ≤ 𝜉2

𝑗
≤ 𝑎2, (37) 

 𝑗 = 1,2,…,𝑁𝑜,  

continuously over time 

 𝑢𝜉𝑗(𝑡) = 𝑢(𝜉𝑗,𝑡),   𝜉𝑗 ∈ Ω,   𝑡 ∈ [0,𝑇],   𝑗 = 1,2,…,𝑁𝑜 . (38) 

current temperature measurement is performed. 

When the measurements are as (38), 𝜗𝑖(𝑡), 𝑖 = 1, … , 𝑁𝑐, the values 

of the point-wise control sources are given with linear feedback by the 

following formula: 
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𝜗𝑖(𝑡) = ∑ 𝑘𝑖
𝑗
[𝑢(𝜉𝑗,𝑡) − 𝑧𝑖

𝑗
]

𝑁𝑜

𝑗=1

,   𝑡 ∈ [0,𝑇],   𝑖 = 1,2,…,𝑁𝑐. (39) 

Here 𝑘𝑖
𝑗
 is the gain coefficient for source 𝑖 taking into account the 

temperature at measuring point 𝑗; 𝑧𝑖
𝑗
 is the nominal value of the plate 

temperature at measuring point 𝑗 that should be supported by 

source 𝑖. 
We substitute expression (39) into the differential equation (34): 

 𝑢𝑡(𝑥,𝑡) = 𝑎2 div(grad 𝑢(𝑥,𝑡)) − 𝜆0[𝑢(𝑥,𝑡) − 𝜃] + (40) 

 + ∑ ∑ 𝑘𝑖
𝑗
[𝑢(𝜉𝑗,𝑡) − 𝑧𝑖

𝑗
]

𝑁𝑜

𝑗=1

𝛿(𝑥 − 𝜂𝑖)

𝑁𝑐 

𝑖=1

,   𝑥 ∈ Ω,   𝑡 ∈ (0,𝑇], 

The possible values of control sources are defined as follows: 

 𝜗𝑖 ≤ 𝜗𝑖(𝑡) ≤ 𝜗𝑖 ,   𝑖 = 1, … , 𝑁𝑐,   𝑡 ∈ [0, 𝑇], (41) 

The points of location of heat sources 𝜂 = (𝜂1, … , 𝜂𝑁𝑐) must meet 

the following conditions: 

𝜂𝑖 = (𝜂1
𝑖 , 𝜂2

𝑖 ) ∈ Ω,   𝑎1 ≤ 𝜂1
𝑖 ≤ 𝑎1,   𝑎2 ≤ 𝜂2

𝑖 ≤ 𝑎2, 𝑖 = 1, … , 𝑁𝑐 . (42) 

Optimized parameters in the considered problem 𝜂 ∈ R2𝑁𝑐, 𝜉 ∈
R2𝑁𝑜, 𝐾, 𝑍 ∈ R𝑁𝑐𝑁𝑜 are fixed parameters. Total number 𝑛 =
2(𝑁𝑐𝑁𝑜 + 𝑁𝑜 + 𝑁𝑐) and 𝑦 = (𝐾, 𝑍, 𝜉, 𝜂) ∈ R𝑛. 

Let's the criterion of control is the following functional: 

 ℐ(𝑦) = ∫ ∫ 𝐼(𝑦;𝜑,𝜃)𝜌Θ(𝜃)𝜌Φ(𝜑) 𝑑𝜃

Θ

𝑑𝜑

Φ

, (43) 

𝐼(𝑦;𝜑,𝜃) = ∬ 𝜇(𝑥)[𝑢(𝑥,𝑇;𝑦,𝜑,𝜃) − 𝑈(𝑥)]2 𝑑𝑥

Ω

+ 휀‖𝑦 − �̂�‖R𝑛
2 , (44) 

Let us denote the solution of the initial-boundary value problem by 

(40), (35), (36) for any possible vector 𝑦, initial condition and 𝜃 by the 

ambient temperature as 𝑢(𝑥, 𝑡; 𝑦, 𝜑, 𝜃). �̂�, 휀 > 0 are regularization 

parameters. 

If we replace (39) with (41) for control sources, we get: 

𝜗𝑖 ≤ ∑ 𝑘𝑖
𝑗
[𝑢(𝜉𝑗,𝑡) − 𝑧𝑖

𝑗
]

𝑁𝑜

𝑗=1

≤ 𝜗𝑖,   𝑡 ∈ [0,𝑇],   𝑖 = 1,2,…,𝑁𝑐. (45) 

Let’s enter the following notation 
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 𝑔𝑖(𝑡;𝑦) = |𝑔𝑖
0(𝑡;𝑦)| −

𝜗𝑖 − 𝜗𝑖

2
,  

𝑔𝑖
0(𝑡;𝑦) =

𝜗𝑖 + 𝜗𝑖

2
− ∑ 𝑘𝑖

𝑗
[𝑢(𝜉𝑗,𝑡) − 𝑧𝑖

𝑗
]

𝑁𝑜

𝑗=1

, 𝑡 ∈ [0,𝑇], 𝑖 = 1,2,…,𝑁𝑐. 

Then we can write the constraint condition (45) in a simpler form: 

 𝑔𝑖(𝑡;𝑦) ≤ 0,   𝑡 ∈ [0,𝑇],   𝑖 = 1,2,…,𝑁𝑐. (46) 

The distance between the location of the sources and the 

measurement points is not less than 𝑑: 

(𝜉1
𝑗

− 𝜂1
𝑖 )

2
+ (𝜉2

𝑗
− 𝜂2

𝑖 )
2

≥ 𝑑2, (47) 

 𝑖 = 1,2,…,𝑁𝑐,   𝑗 = 1,2,…,𝑁𝑜.  

Let 𝑁𝑐𝑁𝑜 in (47) be shown below and add (44) 

𝑔𝑁𝑐+(𝑖−1)𝑁𝑜+𝑗(∙ ;𝑦) = 𝑑2 − (𝜉1
𝑗

− 𝜂1
𝑖 )

2
+ (𝜉2

𝑗
− 𝜂2

𝑖 )
2

≤ 0, (48) 

 𝑖 = 1,2,…,𝑁𝑐,   𝑗 = 1,2,…,𝑁𝑜.  

The total number of constraint conditions (46) and (48) is equal to 

𝑁 = 𝑁𝑐(𝑁𝑜 + 1). 

In order to satisfy the constraints (46) and (48) on the synthesis of 

the considered 𝑦 parameters, we will use the external penalty functions 

by adding a penalty limit to the function (43), (44): 

 ℐ̃(𝑦) = ∫ ∫ 𝐼(𝑦;𝜑,𝜃)𝜌Θ(𝜃)𝜌Φ(𝜑) 𝑑𝜃

Θ

𝑑𝜑

Φ

, (49) 

 𝐼(𝑦;𝜑,𝜃) = 𝐼(𝑦;𝜑,𝜃) + 𝐺(𝑦), (50) 

 𝐺(𝑦) = ∑ ℛ𝑖 ∫[𝑔𝑖
+(𝑡;𝑦)]2 𝑑𝑡

𝑇

0

𝑁𝑐

𝑖=1

+ ∑ ℛ𝑖[𝑔𝑖
+(∙ ;𝑦)]2

𝑁

𝑖=𝑁𝑐+1

.  

here, ℛ𝑖 → +∞, 𝑖 = 1,2,…,𝑁 are penalty coefficients. 

Teorem 5. The components of the gradient of the penalty 

functional (49), (50) according to the (38) continuous by synthesized 

feedback parameters in the initial-boundary value problem (40), (35), 

(36), (37), (42) are determined by the following formulas: 

𝜕ℐ̃(𝑦)

𝜕𝑘𝑖
𝑗

= ∫ ∫ {− ∫(𝜓(𝜂𝑖,𝑡) + 2ℛ𝑖𝑔𝑖
+(𝑡;𝑦) sgn(𝑔𝑖

0(𝑡;𝑦))) ×

𝑇

0ΘΦ

 



 

23 

 

∫ × [𝑢(𝜉𝑗,𝑡) − 𝑧𝑖
𝑗
] 𝑑𝑡 + 2휀(𝑘𝑖

𝑗
− �̂�𝑖

𝑗
)} 𝜌Θ(𝜃)𝜌Φ(𝜑) 𝑑𝜃 𝑑𝜑 , 

𝜕ℐ̃(𝑦)

𝜕𝑧𝑖
𝑗

= ∫ ∫ {𝑘𝑖
𝑗

∫(𝜓(𝜂𝑖,𝑡) + 2ℛ𝑖𝑔𝑖
+(𝑡;𝑦) sgn(𝑔𝑖

0(𝑡;𝑦))) 𝑑𝑡 +

𝑇

0ΘΦ

 

∫ + 2휀(𝑧𝑖
𝑗

− �̂�𝑖
𝑗
)} 𝜌Θ(𝜃)𝜌Φ(𝜑) 𝑑𝜃 𝑑𝜑 , 

𝜕ℐ̃(𝑦)

𝜕𝜉𝛾
𝑗

= ∫ ∫ {− ∑ 𝑘𝑖
𝑗

∫ 𝑢𝑥𝛾
(𝜉𝑗,𝑡)(𝜓(𝜂𝑖,𝑡)+2ℛ𝑖𝑔𝑖

+(𝑡;𝑦) ×

𝑇

0

𝑁𝑐

𝑖=1ΘΦ

× sgn(𝑔𝑖
0(𝑡;𝑦))) 𝑑𝑡 +4 ∑ ℛ𝑁𝑐+(𝑖−1)𝑁𝑜+𝑗(𝜂𝛾

𝑖 − 𝜉𝛾
𝑗
) ×

𝑁𝑐

𝑖=1

× 𝑔𝑁𝑐+(𝑖−1)𝑁𝑜+𝑗
+ (∙ ,𝑦) + 2휀(𝜉𝛾

𝑗
− 𝜉𝛾

𝑗
)} 𝜌Θ(𝜃)𝜌Φ(𝜑) 𝑑𝜃 𝑑𝜑 , 

𝜕ℐ̃(𝑦)

𝜕𝜂𝛾
𝑖

= ∫ ∫ {− ∑ ∫ 𝜓𝑥𝛾
(𝜂𝑖 , 𝑡)𝑘𝑖

𝑗
[𝑢(𝜉𝑗 , 𝑡) − 𝑧𝑖

𝑗
] 𝑑𝑡

𝑇

0

+

𝑁𝑜

𝑗=1ΘΦ

+ 4 ∑ ℛ𝑁𝑐+(𝑖−1)𝑁𝑜+𝑗(𝜉𝛾
𝑗

− 𝜂𝛾
𝑖 )𝑔𝑁𝑐+(𝑖−1)𝑁𝑜+𝑗

+ (∙, 𝑦)

𝑁𝑜

𝑗=1

+ 2휀(𝜂𝛾
𝑖 − �̂�𝛾

𝑖 )} 𝜌Θ(𝜃)𝜌Φ(𝜑) 𝑑𝜃 𝑑𝜑, 

 𝑖 = 1,2,…,𝑁𝑐, 𝑗 = 1,2,…,𝑁𝑜, 𝛾 = 1,2. Here function 𝜓(𝑥,𝑡) =
𝜓(𝑥,𝑡;𝑦,𝜑,𝜃) is the solution of following adjoint boundary-value 

problem: 

 𝜓𝑡(𝑥,𝑡) = −𝑎2 div(grad 𝜓(𝑥,𝑡)) + 𝜆0𝜓(𝑥,𝑡) −  

− ∑ ∑ 𝑘𝑖
𝑗
(𝜓(𝜂𝑖,𝑡) + 2ℛ𝑖𝑔𝑖

+(𝑡;𝑦) sgn(𝑔𝑖
0(𝑡;𝑦)))

𝑁𝑐

𝑖=1

𝛿(𝑥 − 𝜉𝑗)

𝑁𝑜

𝑗=1

, 
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 𝑥 ∈ Ω,   𝑡 ∈ [0,𝑇),  

 𝜓(𝑥,𝑇) = −2𝜇(𝑥)[𝑢(𝑥,𝑇;𝑦) − 𝑈(𝑥)],   𝑥 ∈ Ω,  

 
𝜕𝜓(𝑥,𝑡)

𝜕n
= 𝜆𝜓(𝑥,𝑡),   𝑥 ∈ Γ,   [0,𝑇).  

In the third chapter, high-order approximation methods are 

proposed and solution formulas are obtained for the numerical solution 

of a system of non-autonomous linear ordinary differential equations 

given by non-local (non-separated) intermediate conditions. For 

Dirac's two-dimensional 𝛿-function, a method of approximation with 

a smooth function everywhere has been proposed. 

In paragraph 3.1, the system of linear ordinary differential 

equations with boundary and intermediate conditions 𝐿 − 1 with non-

separated conditions consisting of a number of points is considered: 

 �̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡), 𝑡 ∈ [𝑡0, 𝑇], (51) 

 ∑ 𝐶𝑖𝑥(𝑡�̅�)

𝐿

𝑖=0

= 𝑑, (52) 

here, 𝑥(𝑡) ∈ R𝑛 is 𝑛 dimensional vector-function; 𝐴(𝑡) is the 

continuous 𝑛-dimensional square matrix-function, 𝐴(𝑡) ≠ const, 𝑡 ∈
[𝑡0, 𝑇], 𝐵(𝑡) is continuous 𝑛 dimensional vector-function, 𝐶𝑖 given 

verilmiş 𝑛-dimensional square matrices, 𝑖 = 0,1, … ,𝐿; 𝑑 is a given 𝑛 

dimensional vector; 𝑡�̅� ∈ [𝑡0, 𝑇] moments of time and 𝑡0, 𝑇 given, 

where, 𝑡0 = 𝑡0̅ < 𝑡1̅ < ⋯ < 𝑡�̅� = 𝑇. 

In order to increase the accuracy of the numerical solution of the 

system (51) in the conditions (52) it is proposed to use multipoint 

approximation schemes for the derivative �̇�(𝑡) in a given grid: 

𝜔 = {
𝜏𝑗 ∈ [𝑡0,𝑇]:   𝜏𝑗 = 𝑗ℎ,   𝑗 = 0,1, … ,𝑁,   𝜏0 = 𝑡0,   𝜏𝑁 = 𝑇, 

ℎ = (𝑇 − 𝑡0)/𝑁
} . 

Assume that the points, 𝑡�̅�, 𝑖 = 0,1, … ,𝐿 belong to a given 𝜔 şəbəkə 

grid area, i.e. 

 𝑡�̅� = 𝜏𝑠𝑖
,          𝑖 = 0,1, … ,𝐿,  

here, 𝑠𝑖 is the sequence number in the grid 𝑖-th point 𝑡�̅�. 

Obviously, the known 𝑘-step approximation formulas for �̇�(𝑡) can 

be used: 
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 �̇�(𝑡)|𝑡=𝜏𝑗
= ∑ 𝛼𝛾𝑥𝑗+𝛾

𝑘2

𝛾=𝑘1

+ 𝑂(ℎ𝑚). (53) 

Here 𝑘1 + 𝑘2 = 𝑘, 𝑘1 ≥ 0, 𝑘2 ≥ 0, 𝑥𝑗 = 𝑥(𝜏𝑗) ∈ R𝑛, (53) a is the 

approximation accuracy from the order 𝑚 determined by the 

approximation scheme. 

For the derivative �̇�(𝑡), 𝑂(ℎ𝑚) has any 𝑘 steps of precision from 

the order: 

 

𝑥𝑗 = ∑ 𝛼𝜈
𝑗
𝑥𝑗+𝛾

𝑘2
𝑗

𝛾=𝑘1
𝑗

+ 𝛽𝑗, (54) 

if we use the approximation scheme, we can obtain a system of 

discrete linear equations with 𝑘 steps defined by non-local 

intermediate conditions not separated as follows: 

 

∑ 𝐶𝑖𝑥𝑠𝑖

𝐿

𝑖=0

= 𝑑. (55) 

In relations (54), the coefficients 𝛼𝛾
𝑗
 are determined by the 

coefficients of the differential equations (51) and the approximation of 

the difference scheme (53). The values 𝑘1
𝑗
 and 𝑘2

𝑗
 satisfy the following 

conditions: 

 𝑘1
𝑗

+ 𝑘2
𝑗

= 𝑘,   𝑗 = 0,1, … ,𝑁,  

𝑗 = 𝑁 − 𝑘 + 1,𝑁 − 𝑘 + 2, … ,𝑁 for 𝑘1
𝑗
 və 𝑘2

𝑗
 get different values ((54) 

approximation scheme), but 𝑗 = 0,1, … ,𝑁 − 𝑘 for i.e., 𝜔 for the nodes 

of the internal node of the grid domain 𝑘1
𝑗
 və 𝑘2

𝑗
 have the same values 

and, as a rule, the scheme does not change and is determined by the 

following equations: 

 

𝑥𝑗 = ∑ 𝛼𝛾
𝑗
𝑥𝑗+𝛾

𝑘

𝛾=1

+ 𝛽𝑗,   𝑗 = 0,1,…,𝑁 − 𝑘. (56) 

Teorem 6. The following   

 �̃�𝛾
1 = 𝐶𝑖𝛼𝛾

0,   𝛾 = 1,2,…,𝑘,  

 �̃�𝛾
𝑗+1

= �̃�1
𝑗
𝛼𝛾

𝑗
+ �̃�𝛾+1

𝑗
,   𝛾 = 1,2,…,𝑘 − 1,   �̃�𝑘

𝑗+1
= �̃�1

𝑗
𝛼𝑘

𝑗
,  
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 𝑗 = 𝑠0 + 1,…,𝑠1 − 𝑘 − 1,  

 �̃�𝑘
𝑗+1

= �̃�1
𝑗
𝛼𝑘

𝑗
+ 𝐶2,    𝑗 = 𝑠1 − 𝑘,  

 �̃�1 = 𝑑 − 𝐶0𝛽0,   �̃�𝑗+1 = �̃�𝑗 − �̃�1
𝑗
𝛽𝑗,    𝑗 = 𝑠0 + 1,…,𝑠1 − 𝑘, 

the matrices �̃�𝛾
𝑗
, 𝛾 = 1, … , 𝑘, 𝑗 = 𝑠0, … , 𝑠1 − 𝑘 and vectors �̃�𝑗, 𝑗 =

𝑠0, … , 𝑠1 − 𝑘 obtained from recurrent relations (53) with respect to the 

discrete system (52) are the coefficients of the conditions. 

In paragraph 3.2 analysis of impulse influences in the lumped 

parameter systems, and in paragraph 3.3 analyses the methods of 

approximation of the lumped (point-wise) sources in the distributed 

parameter systems was studied. 

A “sinusoid-like” function was proposed for the approximation of 

Dirac’s one-dimensional 𝛿-function: 

 𝛿𝜀(𝑥;𝜉) = {

0,       |𝑥 − 𝜉| > 휀,

1

2휀
[1 + sin (

2𝑥 − 2𝜉 + 휀

2휀
𝜋)] ,      |𝑥 − 𝜉| ≤ 휀.

  

and the proposed approximation scheme was analyzed. 

In paragraph 3.3, Dirac’s two-dimensional 𝛿-function is 

approximated by the following “sinusoid-like” 𝛿(𝑥;𝜂) function, which 

is smooth everywhere: 
𝛿𝜀(𝑥;𝜂) =

= {

0,    |𝑥1 − 𝜂1| ≥ 휀1 və ya |𝑥2 − 𝜂2| ≥ 휀2,

∏
1

2휀𝑖

[1 + sin (
2𝑥𝑖 − 2𝜂𝑖 + 휀𝑖

2휀𝑖

𝜋)]

2

𝑖=1

,   |𝑥1 − 𝜂1| < 휀1   və    |𝑥2 − 𝜂2| ≤ 휀2.
 

The fourth chapter provides information on the proposed 

algorithms designed to perform computer experiments. Block 

diagrams describing the working principles of algorithms are shown. 

Software developed in C/C ++ programming language. The software 

includes modules describing various one-dimensional minimization 

methods and gradient methods, as well as modules for solving 

different loaded partila differential equations, through which one-

dimensional or two-dimensional differential equations can be solved 

with high accuracy and stabl conditions with the help of grid, variable 

direction and high-precision methods. 

In the Appendix, the numerical solution of the initial-boundary 

value problems described by the parabolic and hyperbolic type partial 
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differential equations, gradient methods for finding the optimal 

solution of control problems, etc. The source code of the software 

modules developed by the author is given. 

The    author    is    grateful    to    the    scientific    consultant, 

corresponding member of NAS of Azerbaijan, doctor of physics 

and mathematics, prof. Aida-zade K.R. for permanent attention 

to work. 
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MAIN RESULTS OF WORK 

 

In the dissertation, the following results were obtained. 

1) The synthesis of the points and power of the lumped control 

impacts in the process of calming the oscillations of the membrane 

with feedback, as well as the coordinates of the measurement 

points was considered and the gradient formulas of the objective 

function for these parameters were obtained. 

2) The problem of synthesis of optimal feedback parameters of 

boundary control in distributed parameter systems has been 

studied and gradient formulas of the objective function for them 

have been obtained. 

3) In the process of heating the plate with point-wise heat sources, the 

synthesis of control, the optimal control and measurement location 

points, the optimization of feedback parameters were studied and 

the gradient of the objective function were obtained. 

4) Analytical formulas of the gradient of the objective functional 

according to the feedback parameters, coordinates of the points of 

measurement and control sources were obtained in the considered 

problems, which the problems were solved numerically using the 

first-order optimization methods. 

5) Schemes of using high-order approximation methods of equations 

for numerical solution of non-autonomous linear ordinary 

differential equations system with non-local intermediate 

conditions are proposed. 

6) Software for computer experiments has been developed based on 

the proposed methods and algorithms for the problems under 

consideration. Numerical experiments were executed on test 

problems using the software, and their results were given. 
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