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GENERAL CHARACTERISTICS OF THE WORK  

Relevance of the topic and degree of elaboration. In the modern 
world, the problem of decision-making is a particularly relevant issue, 
in many areas of human activity. The growing complication of various 
technical, economic and social structures requires finding and 
applying new methods, as well as improving existing methods for 
decision-making by involving decision-maker.  

As an object of research, complex decision-making systems are 
used in various fields of science, for example, management of various 
technological processes, system analysis, etc. Currently, in many 
modern production and work processes, specialists have to work in the 
environment characterized by non-stationary production processes, 
price fluctuations, changes in working conditions, etc. In these areas, 
the theory of fuzzy sets proposed by Professor Lotfi Zadeh plays an 
important role, which allows to describe linguistic information in the 
form of mathematical expressions and creates conditions for the 
creation and application of new scientific methods.  

Starting from von Neumann and Morgenstern's theory of expected 
utility, most of the existing decision-making theories are based on a 
rigorous mathematical foundation and provide satisfactory results. In 
addition, it is designed to make decisions in special situations. Current 
decision-making theories have several important shortcomings: 
technics based on perfect information is used instead of real imperfect 
information; well-formed structured knowledge of future objective 
conditions is required; the classical probability measure is used, in 
reality the probabilities are imprecise; a measure of uncertainty based 
on binary logic is used when there may be real advantages; the fact 
that a person draws conclusions from the linguistic representation of 
information is not taken into account; interaction of decision-makers' 
behavior determinants is not taken into account; partial reliability of 
relevant information is not taken into account for making a true 
decision. Most of the work is devoted to decision-making under first-
order uncertainty. Thus, there is a need to develop a theory of decision 
making that is free from the above limitations. The dissertation 
proposes the foundations of a new decision theory based on a 
comprehensive review of relevant imperfect information under two 
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types of decision-making uncertainty. The above mentioned shows the 
importance of the scientific problem posed in the dissertation. Validity 
and application of the proposed theory, models, and decision-making 
methods are demonstrated by using benchmark standard and real 
decision-making problems. From this point of view, the relevance of 
the research conducted in the dissertation is clear. 

The goals and objectives of the dissertation work. The aim of the 
dissertation is to develop the theory, models and decision-making 
methods under conditions of uncertainty expressed by Z-numbers. To 
achieve this goal, the following tasks were set and relevant problems 
were solved: − Comparative analysis of existing decision-making 
methods; − Analysis of information in decision-making processes; 
− Analysis of information based on Z numbers; − Development of 
operations on Z-numbers; − Building a decision-making model based 
on Z-information; − Building a linear programming model based on 
Z-information; − Creating a decision-making method based on the 
comparison of Z-numbers; − Verification of the effectiveness of the 
proposed methods and models based on Z-information. 

Research methods. Fuzzy set theory, possibility theory, soft 
computing technologies, utility theory, system analysis methods, 
decision-making methods based on partially reliable information, Z-
number theory, uncertainty theory, fuzzy inference are used to solve 
these problems in the dissertation work. Experimental research 
methods were used together with mathematical and simulation 
modeling methods to confirm the obtained theoretical results. The 
computer simulation was carried out in the ZLab software package 
created according to the MatLab software package and shows the 
effectiveness of the results. 

Scientific novelty of the research. The scientific novelty of the 
work results is as follows: - A methodology for solving decision-
making problems based on fuzzy information was proposed; - 
Theoretical basics of decision-making in conditions of uncertainty 
expressed through Z-numbers were proposed; - Arithmetic operations 
on discrete Z-numbers were developed for the first time; - A decision-
making method was proposed in the conditions of Z-information 
expressed directly by Z-numbers; - A model of decision-making in Z-
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information conditions was developed without using utility function; 
- A method for building a multi-criteria decision-making model in Z-
information  conditions is proposed. 

Theoretical and practical significance of research. The proposed 
models and decision-making methods differ from existing classical 
methods by using a more detailed description of uncertainty, taking 
into account psychological and individual determinants of decision-
making, as well as consideration of interval, fuzzy and Z-based 
information. The obvious advantages of the proposed models and 
decision-making methods from a practical point of view have been 
proven by solving various practical decision-making problems. The 
theoretical basics proposed in the dissertation have been widely 
applied in the Zlab software package, including operations on Z-
numbers, Z-linear programming, Pareto optimality, etc. It is included 
in the Zlab package and is widely used in different countries around 
the world. The results of the dissertation are general in nature, the 
proposed models and decision-making methods can be applied in 
various fields of economics, psychology, sociology, technical fields, 
etc. 

Approval and application. The main scientific and practical 
results of the dissertation were discussed in Research laboratory 
"Intelligent control and decision-making systems in industry and 
economics" of Azerbaijan State Oil and Industry University as well as 
in scientific seminars organized at international conferences: 
− Second International Conference on Application of Fuzzy Systems 
and Soft Computing, Siegen, Germany, June 25-27, 1996.  
− Third International Conference on Application of Fuzzy Systems 
and Soft Computing, Wiesbaden, Germany, October 5-7, 1998.  
− Fifth International Conference on Soft Computing with Words and 
Perceptions in System Analysis, Decision and Control. Famaqusta, 
North Cyprus, 2-4 September, 2009.  
− Ninth International Conference on Application of Fuzzy Systems 
and Soft Computing. Prague, Czech Republic, August, 2010.  
− Sixth World Conference on Intelligent Systems for Industrial 
Automation Tashkent, Uzbekistan, November 25-27, 2010.  
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− Sixth International Conference on Soft Computing with Words and 
Perceptions in System Analysis, Decision and Control. Antalya, 
Turkey, August 26-27, 2011.  
− Tenth International Conference on Application of Fuzzy Systems 
and Soft Computing. Lisbon, Portugal. August 29-30, 2012.  
− Seventh International Conference on Soft Computing with Words 
and Perceptions in System Analysis, Decision and Control. İzmir, 
Turkey. August 29-30, 2013.  
− Seventh World Conference on Intelligent Systems for Industrial 
Automation Tashkent, Uzbekistan, November 25-27, 2012  
− Eleventh International Conference on Application of Fuzzy Systems 
and Soft Computing. Paris, France. September 2-3, 2014.  
− Eighth International Conference on Soft Computing, Computing 
with Words and Perceptions in System Analysis, Decision and 
Control. Antalya, Turkey. September 3-4, 2015.  
− ICAFS-2016, 12th International Conference on Application of 
Fuzzy Systems and Soft Computing, ICAFS 2016, 29-30 August 
2016, Vienna, Austria; 
− ICSCCW-2017, 9th International Conference on Theory and 
Application of Soft Computing, Computing with Words and 
Perception - ICSCCW-2017, 22-23 August 2017, Budapest, Hungary; 
− ICAFS-2018, 13th International Conference on Theory and 
Application of Fuzzy Systems and Soft Computing - ICAFS-2018, 26-
27 August 2018, Warsaw, Poland; 
− ICAFS-2020, 14th International Conference on Theory and 
Application of Fuzzy Systems and Soft Computing - ICAFS-2020, 27-
28 August 2020, Budva, Montenegro; 
− WCIS-2020, 11th World Conference on Intelligent systems for 
industrial automation - WCIS-2020, 26-28 November, Tashkent, 
Uzbekistan. 
− ICSCCW-2021, 11th International Conference on Theory and 
Application of Soft Computing, Computing with Words and 
Perceptions and Artificial Intelligence - ICSCCW-2021; 
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− ICAFS-2022, 15th International Conference on Applications of 
Fuzzy Systems, Soft Computing and Artificial Intelligence Tools – 
ICAFS-2022; 
− WCIS-2022, 12th World Conference “Intelligent System for 
Industrial Automation”, (WCIS-2022). 

 
The name of the institution where the dissertation work was 

performed. Azerbaijan State Oil and Industry University, Research 
laboratory "Intelligent control and decision-making systems in 
industry and economics". 

The structure of the dissertation. The dissertation consists of an 
introduction, 6 chapters, a conclusion, a list of used literature and an 
appendix. 

Publications. In total, 61 articles were published. Out of 32 
published research articles, 13 were included in Web of Science, 7 in 
SCOPUS, and 12 in Conference Proceedings Citation Index databases. 
 

MAIN CONTENTS OF THE WORK 

In the introduction, the relevance of the subject area, the goals and 
objectives of the research, the main propositions defended, research 
methods, and the theoretical and practical importance of the research 
are mentioned. 

The first chapter ("The state of research of Z-numbers theory) 
analysis of its application to decision-making" explained the 
information expressed by Z-numbers and reviewed the existing works 
related to decision-making based on Z-numbers. The shortcomings of 
the existing works have been investigated. A verbal formulation of the 
research problems was given. Decision making is based on 
information. For information to be useful, it must be reliable. 
Basically, the concept of Z-number is related to the reliability of 
information. Z-number has two components 𝑍𝑍 = (𝐴𝐴,𝐵𝐵) . The first 
component 𝐴𝐴 is a constraint on the value of the real-valued uncertain 
variable 𝑋𝑋 . The second component B is a measure of certainty 
(probability) about the value of the first component. 𝐴𝐴 and 𝐵𝐵 are often 
expressed through natural language. The concept of Z-numbers has 
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many applications, particularly in economics, decision analysis, risk 
assessment, forecasting, , and characterization of relationships and 
imprecise functions based on production rules. In the real world, 
uncertainty is a widespread phenomenon. Most of the information on 
which decision-making is based is uncertain. One of the remarkable 
abilities of humans is the ability to make rational decisions based on 
uncertain, imprecise, and incomplete information. At least some 
formalization of this capability is a rare approach. It is this approach 
that forms the basis of the main concepts and ideas of the dissertation 
work. 

The constraint 𝑅𝑅(𝑋𝑋):𝑋𝑋 is 𝐴𝐴 understood as a possibility constraint, 
where 𝐴𝐴 serves as the probability distribution of 𝑋𝑋 . More specifically, 
can be written as 𝑅𝑅(𝑋𝑋):𝑋𝑋 is 𝐴𝐴 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋 = 𝑢𝑢) = 𝜇𝜇𝐴𝐴(𝑢𝑢). Here 𝜇𝜇𝐴𝐴 is 
the membership function of 𝐴𝐴 and 𝑢𝑢 is the general value of 𝑋𝑋. 𝜇𝜇𝐴𝐴(𝑢𝑢) 
can be viewed as a constraint conditioned by 𝑅𝑅(𝑋𝑋). 𝜇𝜇𝐴𝐴(𝑢𝑢) means the 
degree to which 𝑢𝑢 satisfies the constraint condition1. 

When 𝑋𝑋 is a random variable, the probability distribution of 𝑋𝑋 acts 
as a probability constraint on 𝑋𝑋 . The probabilistic restriction is 
expressed as follows: 𝑅𝑅(𝑋𝑋): 𝑋𝑋 𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝, where 𝑝𝑝 is the density function 
of the probability distribution of 𝑋𝑋. In this case 
𝑅𝑅(𝑋𝑋):  𝑋𝑋  𝑖𝑖𝑖𝑖𝑖𝑖  𝑝𝑝 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑢𝑢 ≤ 𝑋𝑋 ≤ 𝑢𝑢 + 𝑑𝑑𝑑𝑑) = 𝑝𝑝(𝑢𝑢)𝑑𝑑𝑑𝑑. 

A 𝑍𝑍 -valuation is expressed as an ordered triple (𝑋𝑋,𝐴𝐴,𝐵𝐵) . 𝑍𝑍  -
valuation is equivalent to the 𝑋𝑋  is (𝐴𝐴,𝐵𝐵)  operator. If 𝐴𝐴  is not a 
singleton, then 𝑋𝑋 is an uncertain variable. Accordingly, uncertainty 
calculus is a system of calculations in which the objects of calculation 
are not the values of the variables, but the constraints on the values of 
the variables. 𝑋𝑋 is assumed to be a random variable unless otherwise 
specified in the thesis. For simplicity, even when we say that the value 
of 𝑋𝑋 is 𝐴𝐴, we do not mean that the value of 𝑋𝑋 is equal to 𝐴𝐴, but that the 
values that 𝑋𝑋 can take are constrained to 𝐴𝐴. The second component 
represents certainty. As concepts closely related to certainty, 𝐵𝐵  is 

 
1 Rafik A. Aliev, Rashad R. Aliyev, Oleg H. Huseynov, Akif V. Alizadeh, The Arithmetic 
of Z-Numbers, Theory and Applications, Word Scientific Publishing, 2015 İSBN 978981-
4675-28-4, 2015, 316,  https://www.worldcat.org/title/arithmetic-of-z-numbers-theory-and-
applications/oclc/907652071 

http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Rafik+A.+Aliev%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Oleg+H.+Huseynov%22
https://www.worldcat.org/title/arithmetic-of-z-numbers-theory-and-applications/oclc/907652071
https://www.worldcat.org/title/arithmetic-of-z-numbers-theory-and-applications/oclc/907652071
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certainty, reliability, degree of confidence, probability, possibility, etc. 
It can be shown. When 𝑋𝑋 is a random variable, certainty is equated 
with probability. 

If 𝑋𝑋  is a random variable, then 𝑋𝑋  is 𝐴𝐴  fuzzy event on the real 
number axis. The probability 𝑃𝑃 of this event can be expressed as: 

𝑃𝑃 = ∫ 𝜇𝜇𝐴𝐴(𝑢𝑢)𝑝𝑝𝑋𝑋(𝑢𝑢)𝑑𝑑𝑑𝑑𝑅𝑅 , 
where the probability density function 𝑝𝑝𝑋𝑋 of the random variable 𝑋𝑋 is 
implicitly given. In fact, the 𝑍𝑍-valuation (𝑋𝑋,𝐴𝐴,𝐵𝐵) may be viewed as a 
restriction on X defined by 

Prob(X is A) is B. 

It should be emphasized that the hidden probability distribution 𝑝𝑝𝑋𝑋 
in the representation of the Z-number (𝐴𝐴,𝐵𝐵) in the form of an ordered 
pair is unknown. What is known is the constraint on 𝑝𝑝𝑋𝑋 . This 
restriction is expressed as follows: 

∫ 𝜇𝜇𝐴𝐴(𝑢𝑢)𝑝𝑝𝑋𝑋(𝑢𝑢)𝑑𝑑𝑑𝑑  𝑖𝑖𝑖𝑖  𝐵𝐵𝑅𝑅 . 

In the second chapter ("Operations on Z-numbers and Z-sets") 
preliminary information on operations on Z-numbers, operations on 
random variables, operations on continuous Z-numbers by L.Zade's 
method and difficulties of this method are shown. Operations on 
discrete Z-numbers, the importance of operations on discrete Z-
numbers is justified when performing operations on Z-numbers. 

Arithmetic operations on continuous Z-numbers2,3. Assume that 
𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1)  and 𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2)  are the Z-numbers describing 
imperfect information about real-valued random variables 𝑋𝑋1 and 𝑋𝑋2. 
Let's look at the calculation of the sum of 𝑍𝑍12 = 𝑍𝑍1 + 𝑍𝑍2 . As 
mentioned, performing this operation on Z-numbers starts with 
performing the corresponding operation on the corresponding 

 
2 Rafik A. Aliev, Rashad R. Aliyev, Oleg H. Huseynov, A.V. Alizadeh, The Arithmetic of 
Z-Numbers, Theory and Applications, Word Scientific Publishing, 2015 İSBN 978981-
4675-28-4, 2015 
3 A.V. Alizadeh, Rashad R. Aliev, Rafig R. Aliyev. Operational approach to z-information-
based decision making, ICAFS-2012, Tenth International Conference on Application of 
Fuzzy Systems and Soft Computing, Lisbon, Portugal, August 29-30, 2012, 269-277. 
 

http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Rafik+A.+Aliev%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Oleg+H.+Huseynov%22
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𝑍𝑍+ numbers. The result of the sum 𝑍𝑍12+ = 𝑍𝑍1+ + 𝑍𝑍2+  expressed in 
𝑍𝑍+number is determined as follows: 𝑍𝑍1+ + 𝑍𝑍2+ = (𝐴𝐴1 + 𝐴𝐴2,𝑅𝑅1 + 𝑅𝑅2). 

In general, we consider broad family of probability distributions𝑅𝑅1 
and 𝑅𝑅2. For simplicity, let’s consider normal distributions: 

𝑝𝑝1(𝑥𝑥1) = 1
�2𝜋𝜋𝜎𝜎1

𝑒𝑒
−(𝑥𝑥1−𝜇𝜇1

2)
2𝜎𝜎1

2 ,   (1) 

𝑝𝑝2(𝑥𝑥2) = 1
�2𝜋𝜋𝜎𝜎2

𝑒𝑒
−(𝑥𝑥2−𝜇𝜇2

2)
2𝜎𝜎2

2 .   (2) 

The sum of fuzzy numbers 𝐴𝐴1 + 𝐴𝐴2  is calculated using the 
formulas of fuzzy arithmetic. And 𝑅𝑅1 + 𝑅𝑅2 is determined according to 
(3) as the convolution of continuous probability density functions 
𝑝𝑝12 = 𝑝𝑝1 ∘+ 𝑝𝑝2. As a result, the following expression is used4: 

𝑝𝑝12(𝑥𝑥12) = 1

�2𝜋𝜋(𝜎𝜎12+𝜎𝜎22)
exp �− (𝑥𝑥12−(𝜇𝜇1+𝜇𝜇2))2

2(𝜎𝜎12+𝜎𝜎22)
�. (3) 

Taking these into account, we get 𝑍𝑍12+  as 𝑍𝑍12+ = (𝐴𝐴1 + 𝐴𝐴2,𝑝𝑝12) , 
which is the corresponding 𝑍𝑍+ number –it is the first step in addition 
of 𝑍𝑍 -numbers. 

In the next step, we take into account that given the 𝑍𝑍 -numbers 
𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1) and 𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2) the "real" probability distributions 
𝑝𝑝1 and 𝑝𝑝2 are not known exactly. Instead, the available information is 
represented as fuzzy constraints: 

∫ 𝜇𝜇𝐴𝐴1(𝑥𝑥1)𝑝𝑝𝑅𝑅1(𝑥𝑥1)ℛ  𝑑𝑑𝑥𝑥1 𝑖𝑖𝑖𝑖  𝐵𝐵1,                                (4) 

∫ 𝜇𝜇𝐴𝐴2(𝑥𝑥2)𝑝𝑝𝑅𝑅2(𝑥𝑥2)𝑑𝑑𝑥𝑥2  ℛ 𝑖𝑖𝑖𝑖  𝐵𝐵2,                               (5) 

and is expressed through membership functions as follows: 
𝜇𝜇𝐵𝐵1�∫ 𝜇𝜇𝐴𝐴1(𝑥𝑥1)𝑝𝑝𝑅𝑅1(𝑥𝑥1)𝑑𝑑𝑥𝑥1ℛ �  ,                             (6) 

𝜇𝜇𝐵𝐵2�∫ 𝜇𝜇𝐴𝐴2(𝑥𝑥2)𝑝𝑝𝑅𝑅2(𝑥𝑥2)𝑑𝑑𝑥𝑥2ℛ �  .                               (7) 

These constraints indicate the degree to which the probability 
distributions 𝑝𝑝1 and 𝑝𝑝2 belong to the corresponding fuzzy sets and are 
expressed as follows: 

 
4  http://thirteen-01.stat.iastate.edu/wiki/stat430/files?filename=Ch-2.2-trivedi.pdf 

http://thirteen-01.stat.iastate.edu/wiki/stat430/files?filename=Ch-2.2-trivedi.pdf
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𝜇𝜇𝑝𝑝𝑅𝑅1(𝑝𝑝𝑅𝑅1) = 𝜇𝜇𝐵𝐵1�∫ 𝜇𝜇𝐴𝐴1(𝑥𝑥1)𝑝𝑝𝑅𝑅1(𝑥𝑥1)𝑑𝑑𝑥𝑥1ℛ �    (6a) 

𝜇𝜇𝑝𝑝𝑅𝑅2(𝑝𝑝𝑅𝑅2) = 𝜇𝜇𝐵𝐵2�∫ 𝜇𝜇𝐴𝐴2(𝑥𝑥2)𝑝𝑝𝑅𝑅2(𝑥𝑥2)𝑑𝑑𝑥𝑥2ℛ �.  (7a) 

Thus, 𝐵𝐵𝑗𝑗 , 𝑗𝑗 = 1,2 is a fuzzy number, which plays the role of a soft 
constraint on a value of a probability measure of 𝐴𝐴𝑗𝑗. Here we will use 
discretized version of (6)-(7). In this case basic values 𝑏𝑏𝑗𝑗𝑗𝑗 ∈
supp(𝐵𝐵𝑗𝑗), 𝑗𝑗 = 1,2;  𝑙𝑙 = 1, . . . ,𝑚𝑚  of a discretized fuzzy number 𝐵𝐵𝑗𝑗 , 𝑗𝑗 =
1,2  are values of a probability measure of 𝐴𝐴𝑗𝑗 , 𝑏𝑏𝑗𝑗𝑗𝑗 = 𝑃𝑃(𝐴𝐴𝑗𝑗) . Thus, 
given 𝑏𝑏𝑗𝑗𝑗𝑗 , we have to find such probability distribution 𝑝𝑝𝑗𝑗𝑗𝑗  which 
satisfies: 
𝑏𝑏𝑗𝑗𝑗𝑗 = 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗1)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1) + 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗2)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗2)+. . . +𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗𝑛𝑛𝑗𝑗)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑛𝑛𝑗𝑗). 

At the same time, we know that 𝑝𝑝𝑗𝑗𝑗𝑗 has to satisfy: 
∑ 𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗)𝑛𝑛𝑗𝑗
𝑘𝑘=1 = 1,𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗) ≥ 0. 

Therefore, the following goal programming problem should be 
solved to find𝑝𝑝𝑗𝑗: 
𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗1)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1) + 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗1)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1)+. . . +𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗𝑛𝑛𝑗𝑗)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑛𝑛𝑗𝑗) → 𝑏𝑏𝑗𝑗𝑗𝑗

 (8) 
subject to 

𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1) + 𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗2)+. . . +𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗) = 1
𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1),𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗2), . . . ,𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗) ≥ 0 �. (9) 

Now, denote 𝑐𝑐𝑘𝑘 = 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗)
 
and 𝑣𝑣𝑘𝑘 = 𝑝𝑝𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗),𝑘𝑘 = 1, . . ,𝑛𝑛 . As 𝑐𝑐𝑘𝑘 

and 𝑏𝑏𝑗𝑗𝑗𝑗 are known numbers, and 𝑣𝑣𝑘𝑘 are unknown decision variables, 
we see that the problem (8)-(9) is nothing but the following goal linear 
programming problem: 

𝑐𝑐1𝑣𝑣1 + 𝑐𝑐2𝑣𝑣2+. . . +𝑐𝑐𝑛𝑛𝑣𝑣𝑛𝑛 → 𝑏𝑏𝑗𝑗𝑗𝑗 (8a) 

subject to 
𝑣𝑣1 + 𝑣𝑣2+. . . +𝑣𝑣𝑛𝑛 = 1
𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑛𝑛 ≥ 0 �. (9a) 

Having obtained the solution 𝑣𝑣𝑘𝑘,𝑘𝑘 = 1, . . ,𝑛𝑛 of problem (8a)-(9a) 
for each 𝑙𝑙 = 1, . . . ,𝑚𝑚 , we recall that 𝑣𝑣𝑘𝑘 = 𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗),  𝑘𝑘 = 1, . . ,𝑛𝑛 . 
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Therefore, the probability distribution 𝑝𝑝𝑗𝑗𝑗𝑗 is obtained. Next, as 𝑝𝑝𝑗𝑗𝑗𝑗 is 
obtained given 𝑏𝑏𝑗𝑗𝑗𝑗, the desired degree is 𝜇𝜇𝑝𝑝𝑗𝑗𝑗𝑗(𝑝𝑝𝑗𝑗𝑗𝑗) = 𝜇𝜇𝐵𝐵𝑗𝑗�𝑏𝑏𝑗𝑗𝑗𝑗�, 𝑗𝑗 = 1,2, 
that is 

𝜇𝜇𝑝𝑝𝑗𝑗𝑗𝑗(𝑝𝑝𝑗𝑗𝑗𝑗) = 𝜇𝜇𝐵𝐵𝑗𝑗 �∑ 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗)𝑛𝑛𝑗𝑗
𝑘𝑘=1 �.  

Thus, to construct a fuzzy set of probability distributions𝑝𝑝𝑗𝑗𝑗𝑗, it is 
needed to solve 𝑛𝑛 simple goal linear programming problems (8a)-(9a). 
For normal random variables, taking into account compatibility 
conditions, this problem is reduced to optimization problem with one 
parameter 𝜎𝜎. This problem may be solved by a simple optimization 
method. 

The fuzzy sets of probability distributions 𝑝𝑝1 and 𝑝𝑝2 obtained from 
approximation of calculated 𝑝𝑝 𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗) by a normal distribution, induce 
the fuzzy set of convolutions 𝑝𝑝12𝑠𝑠, 𝑠𝑠 = 1, . . . ,𝑚𝑚2,  with the 
membership function defined as  

𝜇𝜇𝑝𝑝12(𝑝𝑝12) = max𝑝𝑝1,𝑝𝑝2[𝜇𝜇𝑝𝑝1(𝑝𝑝1) ∧ 𝜇𝜇𝑝𝑝2(𝑝𝑝2)] (10) 

subject to 𝑝𝑝12 = 𝑝𝑝1 ∘+ 𝑝𝑝2, (11) 

where ∧ is min operation. 
At the next step we should compute probability measure of 𝐴𝐴12 =
𝐴𝐴1 + 𝐴𝐴2 given 𝑝𝑝12, that is, to compute probability measure 𝑃𝑃(𝐴𝐴12) of 
the fuzzy event 𝑋𝑋  𝑖𝑖𝑖𝑖  𝐴𝐴12: 

𝑃𝑃(𝐴𝐴12) = ∫ 𝜇𝜇𝐴𝐴12(𝑢𝑢)𝑝𝑝12(𝑢𝑢)𝑑𝑑𝑑𝑑ℛ  (12) 

Thus, when 𝑝𝑝12  is known, 𝑃𝑃(𝐴𝐴12)  is a number 𝑃𝑃(𝐴𝐴12) = 𝑏𝑏12 . 
However, what is only known is a fuzzy restriction on 𝑝𝑝12 described 
by the membership function 𝜇𝜇𝑝𝑝12. Therefore, 𝑃𝑃(𝐴𝐴12) will be a fuzzy 
set 𝐵𝐵12 with the membership function 𝜇𝜇𝐵𝐵12 defined as follows: 

𝜇𝜇𝐵𝐵12(𝑏𝑏12𝑠𝑠) = sup(𝜇𝜇𝑝𝑝12𝑠𝑠(𝑝𝑝12𝑠𝑠)) (13) 

subject to 
𝑏𝑏12𝑠𝑠  = ∫ 𝜇𝜇𝐴𝐴12(𝑥𝑥)𝑝𝑝12𝑠𝑠(𝑥𝑥𝑘𝑘)𝑑𝑑𝑑𝑑ℛ  (14) 

As a result, 𝑍𝑍12 = 𝑍𝑍1 + 𝑍𝑍2 is obtained as 𝑍𝑍12 = (𝐴𝐴12,𝐵𝐵12). 



13 

Other operations on continuous Z-numbers are performed 
analogously to the addition operation. 

Operations on discrete Z-numbers5. 

Addition of Discrete Z-numbers. Let 𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1)  and 𝑍𝑍2 =
(𝐴𝐴2,𝐵𝐵2)  be discrete Z-numbers describing imperfect information 
about values of real-valued uncertain variables 𝑋𝑋1and𝑋𝑋2. Consider the 
problem of computation of addition 𝑍𝑍12 = 𝑍𝑍1 + 𝑍𝑍2. Computation with 
discrete Z-numbers, as that with continuous Z-numbers, starts with the 
computation over the corresponding discrete 𝑍𝑍+ -numbers. The 
discrete 𝑍𝑍+-number 𝑍𝑍12

+ = 𝑍𝑍1
+ + 𝑍𝑍2

+ is determined as follows: 
𝑍𝑍1

+ + 𝑍𝑍2
+ = (𝐴𝐴1 + 𝐴𝐴2,𝑅𝑅1 + 𝑅𝑅2), 

where 𝑅𝑅1  and 𝑅𝑅2 are represented by discrete probability 
distributions: 
𝑝𝑝1 = 𝑝𝑝1(𝑥𝑥11)\𝑥𝑥11 + 𝑝𝑝1(𝑥𝑥12)\𝑥𝑥12+. . . +𝑝𝑝1(𝑥𝑥1𝑛𝑛)\𝑥𝑥1𝑛𝑛, 

𝑝𝑝2 = 𝑝𝑝2(𝑥𝑥21)\𝑥𝑥21 + 𝑝𝑝2(𝑥𝑥22)\𝑥𝑥22+. . . +𝑝𝑝2(𝑥𝑥2𝑛𝑛)\𝑥𝑥2𝑛𝑛, 

for which one necessarily has 
∑ 𝑝𝑝1(𝑥𝑥1𝑘𝑘)𝑛𝑛
𝑘𝑘=1 = 1,   (15) 

∑ 𝑝𝑝2(𝑥𝑥2𝑘𝑘)𝑛𝑛
𝑘𝑘=1 = 1.   (16) 

As the operands in 𝐴𝐴1 + 𝐴𝐴2  and in 𝑅𝑅1 + 𝑅𝑅2  are represented by 
different types of restrictions, then the meanings of +  are also 
different6 . The addition 𝐴𝐴1 + 𝐴𝐴2 of discrete fuzzy numbers is defined 
in accordance with addition over fuzzy numbers and 𝑅𝑅1 + 𝑅𝑅2  is a 
convolution 𝑝𝑝12 = 𝑝𝑝1 ∘ 𝑝𝑝2 of discrete probability distributions: 
𝑝𝑝12(𝑥𝑥) = ∑ 𝑝𝑝1(𝑥𝑥1)𝑝𝑝2(𝑥𝑥2)𝑥𝑥=𝑥𝑥1+𝑥𝑥2 .  

So, we will have 𝑍𝑍12
+  as 𝑍𝑍12

+ = (𝐴𝐴1 + 𝐴𝐴2,𝑝𝑝12), which is the result 
of computation with discrete 𝑍𝑍+ -numbers being the first step of 
computation with Z-numbers.  

 
5 Rafik A. Aliev, A.V. Alizadeh, Oleg H. Huseynov. The arithmetic of discrete Z-numbers. 
Information Sciences  https://doi.org/10.1016/j.ins.2014.08.024, January 2015, Volume 290, 
1, 134-155 
6 Zadeh, L. A. (2010). A note on Z-numbers, Inform. Sciences, 181, pp. 2923–
2932. 

http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Rafik+A.+Aliev%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Oleg+H.+Huseynov%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=9F0F86EAE440217136AC9D0D360EE11C?searchAddFilter=&filterToBeModified=by_facet%7CRafik+A.+Aliev&page=1&q=author%3AAkif+V.+Alizadeh&appliedFilters=source_facet%7CDBLP
http://www.sciencedirect.com/science/journal/00200255
https://doi.org/10.1016/j.ins.2014.08.024
http://www.sciencedirect.com/science/journal/00200255/290/supp/C


14 

At the next stage we realize that in Z-numbers 𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1) and 
𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2), the ‘true’ probability distributions 𝑝𝑝1  and 𝑝𝑝2  are not 
exactly known. In contrast, the information available is represented by 
the fuzzy restrictions: 
∑ 𝜇𝜇𝐴𝐴1(𝑥𝑥1𝑘𝑘)𝑝𝑝1(𝑥𝑥1𝑘𝑘)𝑛𝑛1
𝑘𝑘=1   𝑖𝑖𝑖𝑖  𝐵𝐵1,   ∑ 𝜇𝜇𝐴𝐴2(𝑥𝑥2𝑘𝑘)𝑝𝑝2(𝑥𝑥2𝑘𝑘)𝑛𝑛2

𝑘𝑘=1   𝑖𝑖𝑖𝑖  𝐵𝐵2, 

which are represented in terms of the membership functions as 
𝜇𝜇𝐵𝐵1

�∑ 𝜇𝜇𝐴𝐴1
(𝑥𝑥1𝑘𝑘)𝑝𝑝1(𝑥𝑥1𝑘𝑘)𝑛𝑛1

𝑘𝑘=1 �  ,   𝜇𝜇𝐵𝐵2
�∑ 𝜇𝜇𝐴𝐴2

(𝑥𝑥2𝑘𝑘)𝑝𝑝2(𝑥𝑥2𝑘𝑘)𝑛𝑛2
𝑘𝑘=1 �  . 

These restrictions imply that one has the fuzzy sets of probability 
distributions of 𝑝𝑝1 and 𝑝𝑝2 with the membership functions defined as 
𝜇𝜇𝑝𝑝1

(𝑝𝑝1) = 𝜇𝜇𝐵𝐵1
�∑ 𝜇𝜇𝐴𝐴1

(𝑥𝑥1𝑘𝑘)𝑝𝑝1(𝑥𝑥1𝑘𝑘)𝑛𝑛1
𝑘𝑘=1 �  ,  

𝜇𝜇𝑝𝑝2
(𝑝𝑝2) = 𝜇𝜇𝐵𝐵2

�∑ 𝜇𝜇𝐴𝐴2
(𝑥𝑥2𝑘𝑘)𝑝𝑝2(𝑥𝑥2𝑘𝑘)𝑛𝑛2

𝑘𝑘=1 �  .  

Thus, 𝐵𝐵𝑗𝑗 , 𝑗𝑗 = 1,2 is a discrete fuzzy number, which plays the role 
of a softconstraint on a value of a probability measure of 𝐴𝐴𝑗𝑗. Therefore, 
basic values 𝑏𝑏𝑗𝑗𝑗𝑗 ∈ supp(𝐵𝐵𝑗𝑗), 𝑗𝑗 = 1,2;  𝑙𝑙 = 1, . . . ,𝑚𝑚  of a discrete 
fuzzy number 𝐵𝐵𝑗𝑗, 𝑗𝑗 = 1,2 are values of a probability measure of 𝐴𝐴𝑗𝑗 , 
𝑏𝑏𝑗𝑗𝑗𝑗 = 𝑃𝑃(𝐴𝐴𝑗𝑗) . Thus, given 𝑏𝑏𝑗𝑗𝑗𝑗 , we have to find such probability 
distribution 𝑝𝑝𝑗𝑗𝑗𝑗 which satisfies: 
𝑏𝑏𝑗𝑗𝑗𝑗 = 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗1)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1) + (𝑥𝑥𝑗𝑗2)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗2)+. . . +𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗𝑛𝑛𝑗𝑗)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑛𝑛𝑗𝑗). 

At the same time, we know that 𝑝𝑝𝑗𝑗𝑗𝑗 has to satisfy: 
∑ 𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗)𝑛𝑛𝑗𝑗
𝑘𝑘=1 = 1,𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗) ≥ 0. 

Therefore, the following goal programming problem should be 
solved to find 𝑝𝑝𝑗𝑗: 
𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗1)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1) + 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗1)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1)+. . . +𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗𝑛𝑛𝑗𝑗)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑛𝑛𝑗𝑗) → 𝑏𝑏𝑗𝑗𝑗𝑗     (17) 

subject to 
𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1) + 𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗2)+. . . +𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗) = 1
𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗1),𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗2), . . . , 𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗) ≥ 0 �.  (18) 

Now, denote 𝑐𝑐𝑘𝑘 = 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗) and 𝑣𝑣𝑘𝑘 = 𝑝𝑝𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗),𝑘𝑘 = 1, . . ,𝑛𝑛 . As 𝑐𝑐𝑘𝑘 
and 𝑏𝑏𝑗𝑗𝑗𝑗  are known numbers and 𝑣𝑣𝑘𝑘  are unknown decision variables, 



15 

we see that problem (17)-(18) is nothing but the following goal linear 
programming problem: 

𝑐𝑐1𝑣𝑣1 + 𝑐𝑐2𝑣𝑣2+. . . +𝑐𝑐𝑛𝑛𝑣𝑣𝑛𝑛 → 𝑏𝑏𝑗𝑗𝑗𝑗  (17a) 
subject to 

𝑣𝑣1 + 𝑣𝑣2+. . . +𝑣𝑣𝑛𝑛 = 1
𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑛𝑛 ≥ 0 �.  (18a) 

Having obtained the solution 𝑣𝑣𝑘𝑘 , 𝑘𝑘 = 1, . . ,𝑛𝑛  of problem (17a)-
(18a) for each 𝑙𝑙 = 1, . . . ,𝑚𝑚, recall that 𝑣𝑣𝑘𝑘 = 𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗),𝑘𝑘 = 1, . . ,𝑛𝑛. As 
a result, 𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗),𝑘𝑘 = 1, . . ,𝑛𝑛 is found and, therefore, the probability 
distribution 𝑝𝑝𝑗𝑗𝑗𝑗  is obtained. Next, as 𝑝𝑝𝑗𝑗𝑗𝑗 is obtained given 𝑏𝑏𝑗𝑗𝑗𝑗, then the 
desired membership degree is 𝜇𝜇𝑝𝑝𝑗𝑗𝑗𝑗(𝑝𝑝𝑗𝑗𝑗𝑗) = 𝜇𝜇𝐵𝐵𝑗𝑗�𝑏𝑏𝑗𝑗𝑗𝑗�,𝑗𝑗 = 1,2 , that is 

𝜇𝜇𝑝𝑝𝑗𝑗𝑗𝑗(𝑝𝑝𝑗𝑗𝑗𝑗) = 𝜇𝜇𝐵𝐵𝑗𝑗 �∑ 𝜇𝜇𝐴𝐴𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗)𝑝𝑝𝑗𝑗𝑗𝑗(𝑥𝑥𝑗𝑗𝑗𝑗)𝑛𝑛𝑗𝑗
𝑘𝑘=1 �. Thus, to construct a fuzzy 

set of probability distributions 𝑝𝑝𝑗𝑗𝑗𝑗 , we need to solve 𝑛𝑛 simple goal 
linear programming problems (17a)-(18a). 

The fuzzy sets of probability distributions 𝑝𝑝1𝑙𝑙  and 𝑝𝑝2𝑙𝑙  induce the 
fuzzy set of convolutions 𝑝𝑝12𝑠𝑠, 𝑠𝑠 = 1, . . . ,𝑚𝑚2, with the membership 
function defined as  

𝜇𝜇𝑝𝑝12(𝑝𝑝12) = max𝑝𝑝1,𝑝𝑝2[𝜇𝜇𝑝𝑝1(𝑝𝑝1) ∧ 𝜇𝜇𝑝𝑝2(𝑝𝑝2)] (19) 

subject to 
 𝑝𝑝12 = 𝑝𝑝1 ∘+ 𝑝𝑝2,    (20) 

where ∧ is min operation. 
At the next step we should compute probability measure of 𝐴𝐴12 =

𝐴𝐴1 + 𝐴𝐴2 given 𝑝𝑝12, that is, to compute probability of the fuzzy event 
𝑋𝑋  𝑖𝑖𝑖𝑖  𝐴𝐴12. 

Thus, when 𝑝𝑝12  is known, 𝑃𝑃(𝐴𝐴12) is a number 𝑃𝑃(𝐴𝐴12) = 𝑏𝑏12 . 
However, what is only known is a fuzzy restriction on 𝑝𝑝12 described 
by the membership function 𝜇𝜇𝑝𝑝12. Therefore, 𝑃𝑃(𝐴𝐴12) will be a fuzzy 
set 𝐵𝐵12 with the membership function 𝜇𝜇𝐵𝐵12 defined as follows: 

𝜇𝜇𝐵𝐵12(𝑏𝑏12𝑠𝑠) = sup(𝜇𝜇𝑝𝑝12𝑠𝑠(𝑝𝑝12𝑠𝑠))  (21) 

subject to 
𝑏𝑏12𝑠𝑠  = ∑ 𝑝𝑝12𝑠𝑠(𝑥𝑥𝑘𝑘)𝜇𝜇𝐴𝐴12(𝑥𝑥𝑘𝑘)𝑘𝑘   (22) 
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As a result, 𝑍𝑍12 = 𝑍𝑍1 + 𝑍𝑍2 is obtained as 𝑍𝑍12 = (𝐴𝐴12,𝐵𝐵12). 

An example 1. Let us consider computation of an addition 𝑍𝑍12 =
𝑍𝑍1 + 𝑍𝑍2 of two discrete Z-numbers 𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1) and 𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2), 
given: 
𝐴𝐴1 = 0 1⁄ + 0.3 2⁄ + 0.5 3⁄ + 0.6 4⁄ + 0.7 5⁄ + 0.8 6⁄ + 0.9 7⁄ + 1 8⁄ +
+ 0.8 9⁄ + 0.6 10⁄ + 0 1⁄ 1,  

𝐵𝐵1 = 0 0⁄ + 0.5 0.1⁄ + 0.8 0.2⁄ + 1 0.3⁄ + 0.8 0.4⁄ + 0.7 0.5⁄ + 0.6 0.6⁄ +
+ 0.4 0.7⁄ + 0.2 0.8⁄ + 0.1 0.6⁄ + 0 1⁄ ;   

𝐴𝐴2 = 0 1⁄ + 0.5 2⁄ + 0.8 3⁄ + 1 4⁄ + 0.8 5⁄ + 0.7 6⁄ + 0.6 7⁄ + 0.4 8⁄ +
+ 0.2 9⁄ + 0.1 10⁄ + 0 1⁄ 1,   

𝐵𝐵2 = 0 0⁄ + 0.3 0.1⁄ + 0.5 0.2⁄ + 0.6 0.3⁄ + 0.7 0.4⁄ + 0.8 0.5⁄ +
+ 0.9 0.6⁄ + 1 0.7⁄ + 0.9 0.8⁄ + 0.8 0.6⁄ + 0 1⁄ .   

At the first step of computation of 𝑍𝑍12 we proceed to the discrete 
𝑍𝑍+ -numbers. Let us consider 𝑍𝑍1+ = (𝐴𝐴1,𝑅𝑅1)  and 𝑍𝑍2+ = (𝐴𝐴2,𝑅𝑅2) 
where 𝑅𝑅1 and 𝑅𝑅2 are the following discrete probability distributions 
𝑅𝑅1 and𝑅𝑅2: 

𝑝𝑝1 = 0.27\1 + 0\2 + 0\3 + 0.0027\4 + 0.04\5 + 0.075\6 +
+0.11\7 + 0.15\8 + 0.075\9 + 0.0027\10 + 0.27\11,    

𝑝𝑝2 = 0.09\1 + 0\2 + 0.18\3 + 0.32\4 + 0.18\5 + 0.1\6 +
+0.036\7 + 0\8 + 0\9 + 0\10 + 0.09\11.   

As one can verify, the constraints (15)-(16) are satisfied.  
At the second step we should determine the discrete 𝑍𝑍+-number 

𝑍𝑍12+ = (𝐴𝐴1 + 𝐴𝐴2,𝑅𝑅1 + 𝑅𝑅2). Here we first compute 𝐴𝐴12 = 𝐴𝐴1 + 𝐴𝐴2, we 
have: 

𝐴𝐴12 = ⋃ 𝛼𝛼𝐴𝐴12𝛼𝛼𝛼𝛼∈[0,1] , 
𝐴𝐴12𝛼𝛼 = {𝑥𝑥 ∈ {supp (𝐴𝐴1) + supp (𝐴𝐴2)}|min{𝐴𝐴1𝛼𝛼 + 𝐴𝐴2𝛼𝛼} ≤ 𝑥𝑥 ≤

max{𝐴𝐴1𝛼𝛼 + 𝐴𝐴2𝛼𝛼}}. We will use𝛼𝛼 = 0,0.1, . . . ,1 . The resulting 𝐴𝐴12 is 
found as follows. 
𝐴𝐴12 = 0 1⁄ + 0 2⁄ + 0.19 3⁄ + 0.36 4⁄ + 0.5 5⁄ + 0.58 6⁄ + 0.65 7⁄ + 0.73 8 +⁄
+ 0.8 9⁄ + 0.87 10⁄ + 0.93 1⁄ 1 + 1 12⁄ + 0.9 13⁄ + 0.8 14⁄ + 0.73 15⁄ +
+ 0.7 16⁄ + 0.6 17⁄ + 0.45 18⁄ + 0.3 19⁄ + 0.17 20⁄ + 0.086 21⁄ .

 

Next, we compute 𝑅𝑅1 + 𝑅𝑅2 as a convolution 𝑝𝑝12 = 𝑝𝑝1 ∘+ 𝑝𝑝2 of the 
considered 𝑝𝑝1 and 𝑝𝑝2. 
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For example, compute 𝑝𝑝12(𝑥𝑥)  for 𝑥𝑥 = 4 . The latter can be 𝑥𝑥 =
𝑥𝑥11 + 𝑥𝑥23 = 1 + 3 = 4 , 𝑥𝑥 = 𝑥𝑥13 + 𝑥𝑥21 = 3 + 1 = 4  or 𝑥𝑥 = 𝑥𝑥12 +
𝑥𝑥22 = 2 + 2 = 4. Then 

𝑝𝑝12(4) = 𝑝𝑝1(1)𝑝𝑝2(3) + 𝑝𝑝1(3)𝑝𝑝2(1) + 𝑝𝑝1(2)𝑝𝑝2(2) =

= 0.27 ⋅ 0.18 + 0 ⋅ 0.09 + 0 ⋅ 0 = 0.0486. 

The 𝑝𝑝12 obtained in accordance with (2.36) is given below: 
𝑝𝑝12 = 0\1 + 0.0243\2 + 0\3 + 0.0486\4+. . . +0.007\19 +
+0.0002\20 + 0.0243\21.  

Thus, 𝑍𝑍12+ = (𝐴𝐴1 + 𝐴𝐴2,𝑅𝑅1 + 𝑅𝑅2) = (𝐴𝐴1 + 𝐴𝐴2,𝑝𝑝12) is obtained. 

At the third step we realize, that ‘true’ probability distributions 𝑝𝑝1 
and 𝑝𝑝2 are not exactly known, but only fuzzy restrictions 𝜇𝜇𝑝𝑝1 and 𝜇𝜇𝑝𝑝2 
for 𝑝𝑝1  and 𝑝𝑝2  are available which are induced by 𝐵𝐵1  and 𝐵𝐵2 
respectively. We compute the membership degrees 𝜇𝜇𝑝𝑝𝑗𝑗(𝑝𝑝𝑗𝑗), 𝑗𝑗 = 1,2, 
of the fuzzy restrictions given the solutions of the goal linear 
programming problems (17a)-(18a). Let us consider determination of 
the membership degrees 𝜇𝜇𝑝𝑝1(𝑝𝑝1) and 𝜇𝜇𝑝𝑝2(𝑝𝑝2) for distributions 𝑝𝑝1 and 
𝑝𝑝2  considered above. It is known that 𝜇𝜇𝑝𝑝1(𝑝𝑝1) =
𝜇𝜇𝐵𝐵1�∑ 𝜇𝜇𝐴𝐴1(𝑥𝑥1𝑘𝑘)𝑝𝑝1(𝑥𝑥1𝑘𝑘)𝑛𝑛1

𝑘𝑘=1 �  ,  and as for 𝑝𝑝1  considered above we 
have 
∑ 𝜇𝜇𝐴𝐴1(𝑥𝑥1𝑘𝑘)𝑝𝑝1(𝑥𝑥1𝑘𝑘)𝑛𝑛1
𝑘𝑘=1 = 0 ⋅ 0.27 + 0.3 ⋅ 0 + 0.5 ⋅ 0 + 0.6 ⋅ 0.003 +

+0.7 ⋅ 0.04 + 0.8 ⋅ 0.075 + 0.9 ⋅ 0.11 + 1 ⋅ 0.15 + 0.8 ⋅ 0.075 +
+0.6 ⋅ 0.002 + 0 ⋅ 0.27 = 0.4,

  

then 𝜇𝜇𝑝𝑝1(𝑝𝑝1) = 𝜇𝜇𝐵𝐵1(0.4)   = 0.8 . Analogously, we find that 
𝜇𝜇𝑝𝑝2(𝑝𝑝2) = 1  for 𝑝𝑝2 considered above. Finally, we compute the 
membership degrees for all the considered 𝑝𝑝1 and 𝑝𝑝2. 

At the fourth step, we should determine the fuzzy restriction 𝜇𝜇𝑝𝑝12 
over all the convolutions 𝑝𝑝12 obtained on the base of (19)-(20) from 
all the considered 𝑝𝑝1 and 𝑝𝑝2. It is clear that the fuzzy restriction 𝜇𝜇𝑝𝑝12 
is induced by fuzzy restrictions 𝜇𝜇𝑝𝑝1  and 𝜇𝜇𝑝𝑝2 . For example, the 
membership degree of this fuzzy restriction for the convolution 𝑝𝑝12 
obtained above is 
𝜇𝜇𝑝𝑝12(𝑝𝑝12) = 𝜇𝜇𝑝𝑝1(𝑝𝑝1) ∧ 𝜇𝜇𝑝𝑝2(𝑝𝑝2) = 0.8 ∧ 1 = 0.8. 
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Analogously, we computed the degrees for all the considered 𝑝𝑝12. 

At the fifth step, we should proceed to construction of 𝐵𝐵12 as a soft 
constraint on a probability measure 𝑃𝑃(𝐴𝐴12) based on (21)-(22). First, 
we compute values of probability measure 𝑃𝑃(𝐴𝐴12)  by using the 
obtained convolutions 𝑝𝑝12 . For example, 𝑃𝑃(𝐴𝐴12)  computed with 
respect to 𝑝𝑝12 considered above is 

𝑃𝑃(𝐴𝐴12) = ∑ 𝜇𝜇𝐴𝐴12(𝑥𝑥12𝑘𝑘)𝑝𝑝12(𝑥𝑥12𝑘𝑘) =𝑛𝑛1
𝑘𝑘=1 0 ⋅ 0 + 0 ⋅ 0.243 + 0.19 ⋅ 0 +

+0.36 ⋅ 0.0486 + 0.087 ⋅ 0.5+. . . +0.086 ⋅ 0.243 = 0.63.
  

As the computed 𝑃𝑃(𝐴𝐴12)  is one possible value of probability 
measure within the fuzzy restriction 𝐵𝐵12 to be constructed, we can say 
that one basic value of 𝐵𝐵12 is found as 𝑏𝑏12 = 0.63. Now we recall that 
𝜇𝜇𝐵𝐵12�𝑏𝑏12 = ∑ 𝜇𝜇𝐴𝐴12(𝑥𝑥12𝑘𝑘)𝑝𝑝12(𝑥𝑥12𝑘𝑘)𝑘𝑘 � = 𝜇𝜇𝑝𝑝12(𝑝𝑝12) . Then, given 
𝜇𝜇𝑝𝑝12(𝑝𝑝12) = 0.8 , we obtain 𝜇𝜇𝐵𝐵12(𝑏𝑏12 = 0.63) = 0.8  for 𝑏𝑏12 =
∑ 𝜇𝜇𝐴𝐴12(𝑥𝑥12𝑘𝑘)𝑝𝑝12(𝑥𝑥12𝑘𝑘)𝑘𝑘 . By carrying out analogous computations, we 
constructed 𝐵𝐵12as follows: 
𝐵𝐵12 = 0 0⁄ . 56 + 0.5 0.60⁄ + 0.8 0.63⁄ + 1 0.66⁄ + 0.8 0.6⁄ 9 + 0.7 0.72⁄ +
+ 0.6 0.75⁄ + 0.4 0.78⁄ + 0.2 0.81⁄ + 0.1 0.84⁄ + 0 0.86⁄ + 0 1⁄ .  

Thus, the result of addition 𝑍𝑍12 = (𝐴𝐴12,𝐵𝐵12) is obtained, where 

𝐴𝐴12,𝐵𝐵12 are shown in Fig. 1. 

 
(a) 
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(b) 

Fig. 1. The results of addition of the discrete Z-numbers: (a) 𝐴𝐴12, (b) 𝐵𝐵12 

 
Multiplication of discrete Z-numbers 7 . Let us consider 

multiplication 𝑍𝑍12 = 𝑍𝑍1 ⋅ 𝑍𝑍2  of 𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1)  and 𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2) . 
First,  𝑍𝑍12+ = 𝑍𝑍1+ ⋅ 𝑍𝑍2+ should be determined: 

𝑍𝑍1+ ⋅ 𝑍𝑍2+ = (𝐴𝐴1 ⋅ 𝐴𝐴2,𝑅𝑅1 ⋅ 𝑅𝑅2), 

where 𝑅𝑅1 and 𝑅𝑅2 are represented by discrete probability distributions: 
𝑝𝑝1 = 𝑝𝑝1(𝑥𝑥11)\𝑥𝑥11 + 𝑝𝑝1(𝑥𝑥12)\𝑥𝑥12+. . . +𝑝𝑝1(𝑥𝑥1𝑛𝑛)\𝑥𝑥1𝑛𝑛,  

𝑝𝑝2 = 𝑝𝑝2(𝑥𝑥21)\𝑥𝑥21 + 𝑝𝑝2(𝑥𝑥22)\𝑥𝑥22+. . . +𝑝𝑝2(𝑥𝑥2𝑛𝑛)\𝑥𝑥2𝑛𝑛,  

for which (15)-(16) are satisfied. The product 𝐴𝐴1 ⋅ 𝐴𝐴2 of discrete fuzzy 
numbers is defined and 𝑅𝑅1 ⋅ 𝑅𝑅2  is a convolution 𝑝𝑝12 = 𝑝𝑝1 ∘∗ 𝑝𝑝2  of 
discrete probability distributions defined: 
𝑝𝑝12(𝑥𝑥) = ∑ 𝑝𝑝1(𝑥𝑥1)𝑝𝑝2(𝑥𝑥2𝑗𝑗)𝑥𝑥=𝑥𝑥1⋅𝑥𝑥2 .  

 
7 A.V. Alizadeh, Rashad R. Aliev, Oleg H.Huseynov. Numerical computations with discrete 
z-numbers, ICSCCW-2013, Seventh International Conference on Soft Computing, 
Computing with Words and Perceptions in System Analysis, Decision and Control, Izmir, 
Turkey, September 2-3, 2013, 71-82 

http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Oleg+H.+Huseynov%22
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Thus, we will have 𝑍𝑍12+ = (𝐴𝐴1 ⋅ 𝐴𝐴2,𝑝𝑝12). Next, analogously to the 
procedure described for addition, we construct the fuzzy sets 𝜇𝜇𝑝𝑝𝑗𝑗𝑗𝑗(𝑝𝑝𝑗𝑗𝑗𝑗), 
𝑙𝑙 = 1, . . . ,𝑚𝑚, and the fuzzy set of convolutions 𝑝𝑝12𝑠𝑠, 𝑠𝑠 = 1, . . . ,𝑚𝑚2, 
with the membership function defined by (19)-(20) and a convolution 
defined. 

At the next step probability measure of 𝐴𝐴12 = 𝐴𝐴1 ⋅ 𝐴𝐴2 is computed. 
Finally, a fuzzy set 𝐵𝐵12 is constructed according to (21)-(22). As a 
result, 𝑍𝑍12 = 𝑍𝑍1 ⋅ 𝑍𝑍2 is obtained as 𝑍𝑍12 = (𝐴𝐴12,𝐵𝐵12). 

An example 2. Let us consider multiplication of the Z-numbers 
considered in Section 4.1.3. Again, first we proceed to the discrete 𝑍𝑍+-
numbers. Second, we should calculate 𝑍𝑍12+ = (𝐴𝐴12,𝑅𝑅12) = (𝐴𝐴1 ⋅
𝐴𝐴2,𝑅𝑅1 ⋅ 𝑅𝑅2). In accordance with the approach described above, we 
compute 𝐴𝐴12 = 𝐴𝐴1 ⋅ 𝐴𝐴2  and 𝑅𝑅1 ⋅ 𝑅𝑅2  as a convolution of 𝑝𝑝1  and 𝑝𝑝2 
(taken the same as in the case of addition). The results (obtained 
analogously to the procedures used previously for addition and 
subtraction) are shown below: 

𝐴𝐴12 = 0 1⁄ + 0.16 2⁄ +. . . + 1 32⁄ +. . . + 0.17 100⁄ + 0 121⁄ . 
𝑝𝑝12 = 0.243\1 + 0\2+. . . +0\100 + 0.243\121. 

As a result, 𝑍𝑍12+ = (𝐴𝐴1 ⋅ 𝐴𝐴2,𝑝𝑝12) is obtained. 

Third, we compute membership degrees 𝜇𝜇𝑝𝑝1(𝑝𝑝1)  and 𝜇𝜇𝑝𝑝2(𝑝𝑝2) . 
Fourth, the membership degrees of the convolutions 𝑝𝑝12 are obtained 
on the basis of 𝜇𝜇𝑝𝑝1(𝑝𝑝1)  and 𝜇𝜇𝑝𝑝2(𝑝𝑝2)  analogously to the cases of 
addition.  

Fifth, we compute𝐵𝐵12. For this purpose, we compute values of 
probability measure 𝑃𝑃(𝐴𝐴12) with respect to the obtained convolutions 
𝑝𝑝12. For example, 𝑃𝑃(𝐴𝐴12) computed for 𝑝𝑝12 considered above is 

𝑃𝑃(𝐴𝐴12) = 𝑏𝑏12 = 0.67. 

At the final stage, we construct 𝐵𝐵12  based on (21)-(22). For 
example, 𝜇𝜇𝐵𝐵12(𝑏𝑏12 = 0.67) = 0.8 . The constructed 𝐵𝐵12  is given 
below: 
𝐵𝐵12 = 0 0⁄ . 54 + 0.5 0.57⁄ + 0.8 0.61⁄ + 1 0.63⁄ + 0.8 0.67⁄ +
+ 0.7 0.7⁄ + 0.6 0.73⁄ + 0.4 0.76⁄ + 0.2 0.79⁄ + 0.1 0.819⁄ + 0 0.82⁄ . 
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Thus, 𝑍𝑍12 = (𝐴𝐴12,𝐵𝐵12) as the result of multiplication is obtained 
and 𝐴𝐴12,𝐵𝐵12 are shown in Fig. 2. 

 
(a) 

 
(b) 

Fig. 2. The results of multiplication of the discrete Z-numbers:(a) 𝐴𝐴12, (b) 

𝐵𝐵12. 

 



22 

Square Root of a Discrete Z-number.  

Let us consider computation of 𝑍𝑍𝑌𝑌 = �𝑍𝑍𝑋𝑋. Let 𝑍𝑍𝑋𝑋+ and 𝑍𝑍𝑋𝑋 be the 
same as those considered in the same as in the previous example. Then 
the discrete 𝑍𝑍+-number 𝑍𝑍𝑌𝑌+ is determined as follows: 
𝑍𝑍𝑌𝑌+ = (𝐴𝐴𝑌𝑌,𝑅𝑅𝑌𝑌), 

where 𝐴𝐴𝑌𝑌 = �𝐴𝐴𝑋𝑋 , �𝐴𝐴𝑋𝑋  is determined and 𝑅𝑅𝑌𝑌  is represented by a 
discrete probability distribution  

𝑝𝑝𝑅𝑅𝑌𝑌 = 𝑝𝑝𝑅𝑅𝑌𝑌(𝑦𝑦1)\𝑦𝑦1 + 𝑝𝑝𝑅𝑅𝑌𝑌(𝑦𝑦2)\𝑦𝑦2+. . . +𝑝𝑝𝑅𝑅𝑌𝑌(𝑦𝑦𝑛𝑛)\𝑦𝑦𝑛𝑛,) 
such that 

𝑦𝑦𝑘𝑘 = �𝑥𝑥𝑘𝑘 and 𝑝𝑝𝑅𝑅𝑌𝑌(𝑦𝑦𝑘𝑘) = 𝑝𝑝𝑅𝑅𝑋𝑋(𝑥𝑥𝑘𝑘), 

Then we construct 𝜇𝜇𝑝𝑝𝑋𝑋(𝑝𝑝𝑋𝑋,𝑙𝑙) = 𝜇𝜇𝐵𝐵𝑋𝑋�∑ 𝜇𝜇𝐴𝐴𝑋𝑋(𝑥𝑥𝑘𝑘)𝑝𝑝𝑋𝑋,𝑙𝑙(𝑥𝑥𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �   and 

recall that  
𝜇𝜇𝑝𝑝 𝑌𝑌

�𝑝𝑝𝑌𝑌,𝑙𝑙� = 𝜇𝜇𝑝𝑝𝑋𝑋�𝑝𝑝𝑋𝑋,𝑙𝑙�. 
Next, we compute probability measure of 𝐴𝐴𝑌𝑌 and, given the 

membership function 𝜇𝜇𝑝𝑝𝑌𝑌, we construct a fuzzy set 𝐵𝐵𝑌𝑌 analogously to 
that we did in multiplication. As a result, √𝑍𝑍  is obtained as √𝑍𝑍 =
(𝐴𝐴𝑌𝑌,𝐵𝐵𝑌𝑌). Let us mention that analogously to the case of the square of 
a discrete Z-number with non-negative first component, it is not 
needed to carry out computation of 𝐵𝐵𝑌𝑌. One can easily verify that for 
the case of the square root of a discrete Z-number, 𝐵𝐵𝑌𝑌 = 𝐵𝐵𝑋𝑋 holds. 

An example 3. Let us consider computation of the square root 𝑍𝑍3 =
�𝑍𝑍2  of 𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2)  considered in Section 4.1.3. Given the𝑍𝑍+ -
number 𝑍𝑍2+ = (𝐴𝐴2,𝑅𝑅2) used in the example above, we computed the 
corresponding 𝑍𝑍+ -number 𝑍𝑍3+ = (𝐴𝐴3,𝑅𝑅3) , where 𝐴𝐴3 = �𝐴𝐴2 
computed and 𝑅𝑅3 computed are given below: 
𝐴𝐴3 = 0 1⁄ + 0.5 1.4⁄ + 0.8 1.7⁄ + 1 2 + 0.8 2.2⁄ + 0.7 2.4⁄ + 0.6 2.6 +⁄⁄
+ 0.4 2.8⁄ + 0.2 3⁄ + 0.1 3.2⁄ + 0 3.3⁄ ,  

𝑝𝑝3 = 0.09\1 + 0\1.4 + 0\1.7 + 0.32\2 + 0.18\2.2 + 0.1\2.4 +
+0.036\2.6 + 0\2.8 + 0.2\3 + 0.1\3.2 + 0.09\3.3.  

As it was shown above, 𝐵𝐵3 = 𝐵𝐵2 . However, we computed 𝐵𝐵3 
given𝐴𝐴3, the membership degree 
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𝜇𝜇𝑝𝑝2(𝑝𝑝2) = 𝜇𝜇𝐵𝐵2�∑ 𝜇𝜇𝐴𝐴2(𝑥𝑥𝑘𝑘)𝑝𝑝2(𝑥𝑥𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �   

and taking into account the fact that𝜇𝜇𝑝𝑝 3
(𝑝𝑝3) = 𝜇𝜇𝑝𝑝2(𝑝𝑝2). Thus, Z-

number 𝑍𝑍3 = (𝐴𝐴3,𝐵𝐵3) as the square root of 𝑍𝑍2 is obtained and 𝐴𝐴3,𝐵𝐵3 
are shown in Fig. 3. 

 
(a) 

 
(b) 

Fig. 3. The square root of the discrete Z-number: (a) 𝐴𝐴3, (b) 𝐵𝐵3 
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As one can see, we have 𝐵𝐵3 = 𝐵𝐵2. 

Minimum and maximum of discrete Z-numbers 8.  

Let 𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1)  and 𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2)  be discrete Z-numbers 
describing imperfect information about values of real-valued random 
variables 𝑋𝑋1  and 𝑋𝑋2 . Consider the problem of computation of 
minimum 𝑍𝑍12 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍1,𝑍𝑍2). Computation of the maximum, 𝑍𝑍12 =
𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍1,𝑍𝑍2) is treated analogously.  

Computation with discrete Z-numbers, as that with continuous Z-
numbers, starts with the computation over the corresponding discrete 
𝑍𝑍+ -numbers. The discrete 𝑍𝑍+ -number 𝑍𝑍12+ = min(𝑍𝑍1+,𝑍𝑍2+)  is 
determined as follows: 

min(𝑍𝑍1+,𝑍𝑍2+) = (𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴1,𝐴𝐴2), min(𝑅𝑅1,𝑅𝑅2)) 

where𝑅𝑅1 and 𝑅𝑅2are represented by discrete probability distributions 
for which one necessarily has satisfied:  

∑ 𝑝𝑝1(𝑥𝑥1𝑘𝑘)𝑛𝑛
𝑘𝑘=1 = 1, ∑ 𝑝𝑝2(𝑥𝑥2𝑘𝑘)𝑛𝑛

𝑘𝑘=1 = 1. 

As the operands in 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴1,𝐴𝐴2) and in min(𝑅𝑅1,𝑅𝑅2) are represented 
by different types of restrictions, then the meanings of 𝑀𝑀𝑀𝑀𝑀𝑀 and min 
are also different9. The minimum 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴1,𝐴𝐴2) of DFNs is defined. 
min(𝑅𝑅1,𝑅𝑅2)is a convolution 𝑝𝑝12 = 𝑝𝑝1 ∘𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2 of discrete probability 
distributions and is defined. 

For the case of the maximum of 𝑍𝑍1,𝑍𝑍2 , 𝑍𝑍12 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍1,𝑍𝑍2) , 
instead of the MIN operation over discrete fuzzy numbers and min 
operation over probability distributions, MAX operation defined and 
max operation defined are used respectively. 

So, we will have 𝑍𝑍12+  as 𝑍𝑍12+ = (𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴1,𝐴𝐴2),𝑝𝑝12), which is the 
result of computation with discrete 𝑍𝑍+-numbers, being the first step of 
computation with Z-numbers.  

 
8 A.V. Alizadeh, Oleg H. Huseynov Minimum and maximum of discrete z-numbers, 
Eleventh International Conference on Application of Fuzzy Systems and Soft Computing, 
ICAFS – 2014, Paris, France, September 2-3, 2014, 205-218. 
9 Zadeh, L. A. (2010). A note on Z-numbers, Inform. Sciences, 181, pp. 2923–
2932. 
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Next, we realize that the ‘true’ probability distributions 𝑝𝑝1 and 𝑝𝑝2 
are not exactly known, but the fuzzy restrictions which may be 
represented in terms of membership functions are only available: 

𝜇𝜇𝐵𝐵1�∑ 𝜇𝜇𝐴𝐴1(𝑥𝑥1𝑘𝑘)𝑝𝑝1(𝑥𝑥1𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �  ,𝜇𝜇𝐵𝐵2�∑ 𝜇𝜇𝐴𝐴2(𝑥𝑥2𝑘𝑘)𝑝𝑝2(𝑥𝑥2𝑘𝑘)𝑛𝑛

𝑘𝑘=1 �  .  

These restrictions induce fuzzy sets of probability distributions of 
𝑝𝑝1 and 𝑝𝑝2: 
𝜇𝜇𝑝𝑝1(𝑝𝑝1) = 𝜇𝜇𝐵𝐵1�∑ 𝜇𝜇𝐴𝐴1(𝑥𝑥1𝑘𝑘)𝑝𝑝1(𝑥𝑥1𝑘𝑘)𝑛𝑛

𝑘𝑘=1 �  ,  

𝜇𝜇𝑝𝑝2(𝑝𝑝2) = 𝜇𝜇𝐵𝐵2�∑ 𝜇𝜇𝐴𝐴2(𝑥𝑥2𝑘𝑘)𝑝𝑝2(𝑥𝑥2𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �  .  

Next, to construct  𝐵𝐵1 and 𝐵𝐵2, one needs to compute the values of 
𝜇𝜇𝐵𝐵𝑗𝑗(𝑏𝑏𝑗𝑗𝑗𝑗), 𝑏𝑏𝑗𝑗𝑗𝑗 ∈ supp𝐵𝐵𝑗𝑗, 𝑗𝑗 = 1,2;  𝑙𝑙 = 1, . . . , 𝑛𝑛 , by solving a series of 𝑛𝑛 
goal linear programming problems. 

The fuzzy sets of probability distributions 𝑝𝑝1𝑙𝑙  and 𝑝𝑝2𝑙𝑙  induce the 
fuzzy set of convolutions 𝑝𝑝12𝑠𝑠, 𝑠𝑠 = 1, . . . ,𝑚𝑚2, with the membership 
function defined as  
𝜇𝜇𝑝𝑝12(𝑝𝑝12) = max𝑝𝑝1,𝑝𝑝2[𝜇𝜇𝑝𝑝1(𝑝𝑝1) ∧ 𝜇𝜇𝑝𝑝2(𝑝𝑝2)]  

subject to 𝑝𝑝12 = 𝑝𝑝1 ∘ 𝑝𝑝2,  

where ∧ is min operation. 

At the next step, we should compute probability measure of  

𝐴𝐴12 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴1,𝐴𝐴2): 

𝑃𝑃(𝐴𝐴12)  = ∑ 𝑝𝑝12(𝑥𝑥𝑘𝑘)𝜇𝜇𝐴𝐴12(𝑥𝑥𝑘𝑘)𝑥𝑥𝑘𝑘 . 

However, as a fuzzy restriction on 𝑝𝑝12  described by the 
membership function 𝜇𝜇𝑝𝑝12 is only known, 𝑃𝑃(𝐴𝐴12) will be defined as a 
fuzzy set 𝐵𝐵12 with the membership function 𝜇𝜇𝐵𝐵12 defined as follows: 

𝜇𝜇𝐵𝐵12(𝑏𝑏12𝑠𝑠) = sup(𝜇𝜇𝑝𝑝12𝑠𝑠(𝑝𝑝12𝑠𝑠))  

subject to 
𝑏𝑏12𝑠𝑠  = ∑ 𝑝𝑝12𝑠𝑠(𝑥𝑥𝑘𝑘)𝜇𝜇𝐴𝐴12(𝑥𝑥𝑘𝑘)𝑘𝑘 .  

As a result, 𝑍𝑍12 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑍𝑍1,𝑍𝑍2) is obtained as 𝑍𝑍12 = (𝐴𝐴12,𝐵𝐵12). 
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Z-sets and operations on them.  

Join and meet operations on Z-sets, set-theoretic operations on Z-
sets: complement, intersection, union operations are defined and 
calculation rules are given. These rules by which these operations are 
implemented are proved and explained on examples. 

Definition 1. A Z-set is described as a triple 𝑍𝑍 = (𝐴𝐴,𝐵𝐵,𝐺𝐺), where 
𝐴𝐴 is a fuzzy set, and 𝐵𝐵 is a fuzzy constraint on a probability measure 
𝑃𝑃(𝐴𝐴) constructed through a set of G-probability distributions, such 
that,  
𝐺𝐺 = �𝑝𝑝𝑍𝑍(𝑥𝑥):∫ 𝑝𝑝𝑍𝑍(𝑥𝑥)𝑑𝑑𝑑𝑑+∞

−∞ =

1,∫ 𝑝𝑝𝑍𝑍(𝑥𝑥)𝜇𝜇Α(𝑥𝑥)+∞
−∞   𝑖𝑖𝑖𝑖  𝐵𝐵,∫ 𝑥𝑥𝑝𝑝𝑍𝑍(𝑥𝑥)+∞

−∞ = ∫ 𝑥𝑥𝜇𝜇𝐴𝐴(𝑥𝑥)𝑑𝑑𝑑𝑑+∞
−∞ /

∫ 𝜇𝜇𝐴𝐴(𝑥𝑥)𝑑𝑑𝑑𝑑+∞
−∞ �.  

𝑍𝑍𝑖𝑖 = (𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖,𝐺𝐺𝑖𝑖) We consider three basic operations on the Z-set. 

Complement. Assume that 𝑍𝑍 = (𝐴𝐴,𝐵𝐵,𝐺𝐺) is a given Z-set, such 
that the elements of G is set with probability distributions: 𝐺𝐺 =
�𝑝𝑝𝑍𝑍(𝑥𝑥):∫ 𝑝𝑝𝑍𝑍(𝑥𝑥)𝑑𝑑𝑑𝑑+∞

−∞ = 1,∫ 𝑝𝑝𝑍𝑍(𝑥𝑥)𝜇𝜇Α(𝑥𝑥)+∞
−∞   𝑖𝑖𝑖𝑖  𝐵𝐵,∫ 𝑥𝑥𝑝𝑝𝑍𝑍(𝑥𝑥)+∞

−∞ =
∫ 𝑥𝑥𝜇𝜇𝐴𝐴(𝑥𝑥)𝑑𝑑𝑑𝑑+∞
−∞ /∫ 𝜇𝜇𝐴𝐴(𝑥𝑥)𝑑𝑑𝑑𝑑+∞

−∞ �. The complement 𝑍̅𝑍 of the Z-set 𝑍𝑍 =
(𝐴𝐴,𝐵𝐵,𝐺𝐺) is defined as follows. 

The set of probability distributions 𝐺̅𝐺  for the complement 𝑍̅𝑍  is 
defined as follows:  
𝐺𝐺 = �𝑝𝑝𝑍𝑍(𝑥𝑥):∫ 𝑝𝑝𝑍𝑍(𝑥𝑥)𝑑𝑑𝑑𝑑+∞

−∞ =

1,∫ 𝑝𝑝𝑍𝑍(𝑥𝑥)𝜇𝜇Α(𝑥𝑥)+∞
−∞   𝑖𝑖𝑖𝑖  𝐵𝐵,∫ 𝑥𝑥𝑝𝑝𝑍𝑍(𝑥𝑥)+∞

−∞ = ∫ 𝑥𝑥𝜇𝜇𝐴𝐴(𝑥𝑥)𝑑𝑑𝑑𝑑+∞
−∞ /

∫ 𝜇𝜇𝐴𝐴(𝑥𝑥)𝑑𝑑𝑑𝑑+∞
−∞ �. Then 𝑍̅𝑍 = (𝐴𝐴, 1 − 𝐵𝐵,𝐺𝐺), so that 𝜇𝜇𝐴𝐴(𝑥𝑥) = 1 − 𝜇𝜇𝐴𝐴(𝑥𝑥) 

and 1 − 𝐵𝐵 is understood as a difference. 

Join of Z-sets. Join of Z-sets 𝑍𝑍𝑖𝑖 = (𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖,𝐺𝐺𝑖𝑖), 𝑖𝑖 = 1,2is defined as 
follows: 𝑍𝑍12 = 𝑍𝑍1 ⊔ 𝑍𝑍2 = max(𝑍𝑍1,𝑍𝑍2) = (𝐴𝐴12,𝐵𝐵12). Let us at first 
consider the case of continuous Z-sets. The maximum of two given 
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fuzzy numbers 𝐴𝐴12 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴1,𝐴𝐴2) is defined as follows: 𝐴𝐴12(𝑧𝑧) =
𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴1,𝐴𝐴2)(𝑧𝑧) = sup

𝑧𝑧=max(𝑥𝑥,𝑦𝑦)
min [𝐴𝐴1(𝑥𝑥),𝐴𝐴2(𝑦𝑦)] 10. 

The 𝐺𝐺12 set of 𝑝𝑝12 probability distributions of the join is defined as: 
𝐺𝐺12 = 𝐺𝐺1 ⊔ 𝐺𝐺2, here  
𝐺𝐺𝑖𝑖 = �𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥):∫ 𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑+∞

−∞ = 1, ∫ 𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥)𝜇𝜇Α𝑖𝑖(𝑥𝑥)+∞
−∞   𝑖𝑖𝑖𝑖  𝐵𝐵𝑖𝑖,

∫ 𝑥𝑥𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥)+∞
−∞ = ∫ 𝑥𝑥𝜇𝜇Α𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑+∞

−∞ /∫ 𝜇𝜇Α𝑖𝑖(𝑥𝑥))𝑑𝑑𝑑𝑑+∞
−∞ �. 

Probability distributions 𝑝𝑝12 = 𝑝𝑝1 ∘max 𝑝𝑝2 are defined as follows: 
𝑝𝑝12(𝑥𝑥) = 𝑝𝑝1(𝑥𝑥)𝐹𝐹1(𝑥𝑥) + 𝑝𝑝2(𝑥𝑥)𝐹𝐹2(𝑥𝑥) where 𝐹𝐹1 and 𝐹𝐹2 are cumulative 
distribution functions: 𝐹𝐹1(𝑥𝑥) = ∫ 𝑝𝑝1(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥

−∞ , 𝐹𝐹2(𝑥𝑥) = ∫ 𝑝𝑝2(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥
−∞ . 

Then 𝑍𝑍12 = (𝐴𝐴12,𝐵𝐵12,𝐺𝐺12)  so 𝐺𝐺12 = {𝑝𝑝12(𝑥𝑥): 𝑝𝑝12(𝑥𝑥) =

𝑝𝑝1(𝑥𝑥)𝐹𝐹1(𝑥𝑥) + 𝑝𝑝2(𝑥𝑥)𝐹𝐹2(𝑥𝑥),𝑝𝑝𝑖𝑖(𝑥𝑥) ∈ 𝐺𝐺𝑖𝑖} , 𝐵𝐵12 = {(𝜇𝜇𝑝𝑝12(𝑝𝑝12),𝜇𝜇𝐴𝐴12 ⋅

𝑝𝑝12): 𝑝𝑝12 ∈ 𝐺𝐺12}. 

Meet of Z-sets. The meet of Z-sets 𝑍𝑍𝑖𝑖 = (𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖,𝐺𝐺𝑖𝑖), 𝑖𝑖 = 1,2 is 
defined as follows: 𝑍𝑍12 = 𝑍𝑍1 ⊓ 𝑍𝑍2 = min(𝑍𝑍1,𝑍𝑍2) = (𝐴𝐴12,𝐵𝐵12,𝐺𝐺12). 

The minimum of fuzzy numbers 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴1,𝐴𝐴2)  is defined as 
follows: 
𝐴𝐴12(𝑧𝑧) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴1,𝐴𝐴2)(𝑧𝑧) = sup

𝑧𝑧=min(𝑥𝑥,𝑦𝑦)
min [𝐴𝐴1(𝑥𝑥),𝐴𝐴2(𝑦𝑦)]. 

The 𝐺𝐺12 set of probability distributions of the result 𝑝𝑝12 is defined 
as follows: 𝐺𝐺12 = 𝐺𝐺1 ⊓ 𝐺𝐺2,, here  
𝐺𝐺𝑖𝑖 = �𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥):∫ 𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑+∞

−∞ = 1, ∫ 𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥)𝜇𝜇Α𝑖𝑖(𝑥𝑥)+∞
−∞   𝑖𝑖𝑖𝑖  𝐵𝐵𝑖𝑖,

∫ 𝑥𝑥𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥)+∞
−∞ = ∫ 𝑥𝑥𝜇𝜇Α𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑+∞

−∞ /∫ 𝜇𝜇Α𝑖𝑖(𝑥𝑥))𝑑𝑑𝑑𝑑+∞
−∞ �. 

 
10 A.V. Alizadeh, Properties of Join and Meet Operations over Z-numbers, 14th 
International Conference on Theory and Application of Fuzzy Systems and Soft Computing 
– ICAFS-2020, Montenegro, Advances in Intelligent Systems and Computing, Springer, 
Cham. Online ISBN978-3-030-64058-3, Print ISBN978-3-030-64057-6, eBook Packages 
Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0), 2020, vol 
1306, 580-589, https://www.springer.com/gp/book/9783030640576, 
https://doi.org/10.1007/978-3-030-64058-3_72 

https://link.springer.com/search?facet-content-type=%22Book%22&package=42732&facet-start-year=2021&facet-end-year=2021
https://link.springer.com/search?facet-content-type=%22Book%22&package=43728&facet-start-year=2021&facet-end-year=2021
https://www.springer.com/gp/book/9783030640576
https://doi.org/10.1007/978-3-030-64058-3_72
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The convolution 𝑝𝑝12 = 𝑝𝑝1 ∘min 𝑝𝑝2  of the given probability 
distributions is defined as follows: 
𝑝𝑝12(𝑥𝑥) = 𝑝𝑝1(𝑥𝑥) + 𝑝𝑝2(𝑥𝑥) − 𝑝𝑝1(𝑥𝑥)𝐹𝐹1(𝑥𝑥) − 𝑝𝑝2(𝑥𝑥)𝐹𝐹2(𝑥𝑥),  

where 𝐹𝐹1  and 𝐹𝐹2  are the corresponding cumulative probability 
distribution functions: 
𝐹𝐹1(𝑥𝑥) = ∫ 𝑝𝑝1(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥

−∞ ,  𝐹𝐹2(𝑥𝑥) = ∫ 𝑝𝑝2(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥
−∞ . 

Then  
𝐺𝐺12 = {𝑝𝑝12(𝑥𝑥): 𝑝𝑝12(𝑥𝑥) = 𝑝𝑝1(𝑥𝑥) + 𝑝𝑝2(𝑥𝑥) − 𝑝𝑝1(𝑥𝑥)𝐹𝐹1(𝑥𝑥) −

𝑝𝑝2(𝑥𝑥)𝐹𝐹2(𝑥𝑥),𝑝𝑝𝑖𝑖(𝑥𝑥) ∈ 𝐺𝐺𝑖𝑖}. 

Thus, 
𝐵𝐵12 = ��𝜇𝜇𝑝𝑝12(𝑝𝑝12),𝜇𝜇𝐴𝐴12 ⋅ 𝑝𝑝12�: 𝑝𝑝12 ∈ 𝐺𝐺12�. 

The union of Z-sets11. The union of Z-sets (𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖,𝐺𝐺𝑖𝑖), 𝑖𝑖 = 1,2 is 
denoted as 𝑍𝑍12 = 𝑍𝑍1 ∪ 𝑍𝑍2 = 𝑍𝑍𝑍𝑍𝑍𝑍(𝑍𝑍1,𝑍𝑍2) = (𝐴𝐴12,𝐵𝐵12,𝐺𝐺12)  and 
defined as follows: The union 𝐴𝐴12 = 𝐴𝐴1 ∪ 𝐴𝐴2 of fuzzy sets 𝐴𝐴1 and 𝐴𝐴2 
is defined as: 

 𝐴𝐴12(𝑥𝑥) = (𝐴𝐴1 ∪ 𝐴𝐴2)(𝑥𝑥) = max(𝐴𝐴1(𝑥𝑥),𝐴𝐴2(𝑥𝑥)). 

Denote the set 𝐺𝐺12 of probability distributions 𝑝𝑝12 by 𝐺𝐺12 = 𝐺𝐺1 ∪
𝐺𝐺2, where for 𝑖𝑖 = 1,2 is defined as 
𝐺𝐺𝑖𝑖 = �𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥):∫ 𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑𝑋𝑋 = 1,∫ 𝑝𝑝𝑍𝑍𝑖𝑖(𝑥𝑥)𝐴𝐴𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑𝑋𝑋   𝑖𝑖𝑖𝑖  𝐵𝐵𝑖𝑖, 𝑥𝑥 ∈ 𝑋𝑋�  

Convolution of probability distributions 𝑝𝑝12 = 𝑝𝑝𝑍𝑍1∪𝑍𝑍2(𝑥𝑥) =
𝑝𝑝𝑍𝑍1(𝑥𝑥) ∘∪ 𝑝𝑝𝑍𝑍2(𝑥𝑥) = 𝑝𝑝1 ∘∪ 𝑝𝑝2 is defined as 

𝑝𝑝12(𝑥𝑥) = 𝑝𝑝𝑍𝑍1∪𝑍𝑍2(𝑥𝑥) = (𝑝𝑝𝑍𝑍1(𝑥𝑥)+𝑝𝑝𝑍𝑍2(𝑥𝑥)−𝑝𝑝𝑍𝑍1(𝑥𝑥)𝑝𝑝𝑍𝑍2(𝑥𝑥))𝑝𝑝𝑋𝑋(𝑥𝑥)

∫ (𝑝𝑝𝑍𝑍1(𝑥𝑥)+𝑝𝑝𝑍𝑍2(𝑥𝑥)−𝑝𝑝𝑍𝑍1(𝑥𝑥)𝑝𝑝𝑍𝑍2(𝑥𝑥))𝑝𝑝𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑𝑋𝑋
.  

Here 𝑝𝑝𝑋𝑋(𝑥𝑥) = 1
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

. 

Then 𝑍𝑍12 = (𝐴𝐴12,𝐵𝐵12,𝐺𝐺12), so 𝐺𝐺12 and 𝐵𝐵12 are defined as:  

 
11 A.V. Alizadeh, Properties of Set-Theoretical Operations over Z-Sets, Advances in 
Intelligent Systems and Computing Springer, Cham. https://doi.org/10.1007/978-3-030-
35249-3_84, 2019, vol 1095, 654-661, https://link.springer.com/chapter/10.1007%2F978-3-
030-35249-3_84 

https://doi.org/10.1007/978-3-030-35249-3_84
https://doi.org/10.1007/978-3-030-35249-3_84
https://link.springer.com/chapter/10.1007%2F978-3-030-35249-3_84
https://link.springer.com/chapter/10.1007%2F978-3-030-35249-3_84
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𝐺𝐺12={𝑝𝑝12(𝑥𝑥): 𝑝𝑝12(𝑥𝑥) = 𝑝𝑝𝑍𝑍1∪𝑍𝑍2(𝑥𝑥) = 
(𝑝𝑝𝑍𝑍1(𝑥𝑥)+𝑝𝑝𝑍𝑍2(𝑥𝑥)−𝑝𝑝𝑍𝑍1(𝑥𝑥)𝑝𝑝𝑍𝑍2(𝑥𝑥))𝑝𝑝𝑋𝑋(𝑥𝑥)

∫ (𝑝𝑝𝑍𝑍1(𝑥𝑥)+𝑝𝑝𝑍𝑍2(𝑥𝑥)−𝑝𝑝𝑍𝑍1(𝑥𝑥)𝑝𝑝𝑍𝑍2(𝑥𝑥))𝑝𝑝𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑𝑋𝑋
, 𝑝𝑝𝑖𝑖(𝑥𝑥) ∈ 𝐺𝐺𝑖𝑖 , 𝑥𝑥 ∈ 𝑋𝑋}. 

Thus, 
𝐵𝐵12 = {(𝜇𝜇𝑝𝑝12(𝑝𝑝12),𝜇𝜇𝐴𝐴12 ⋅ 𝑝𝑝12): 𝑝𝑝12 ∈ 𝐺𝐺12}. 

Intersection of Z-sets. The intersection of Z-sets = (𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖,𝐺𝐺𝑖𝑖), 
𝑖𝑖 = 1,2 is denoted as  
𝑍𝑍12 = 𝑍𝑍1 ∩ 𝑍𝑍2 = 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍(𝑍𝑍1,𝑍𝑍2) = (𝐴𝐴12,𝐵𝐵12,𝐺𝐺12)  

and defined as follows: 
The intersection 𝐴𝐴1 ∩ 𝐴𝐴2 of the fuzzy sets 𝐴𝐴1 and 𝐴𝐴2 is defined as 

follows: 𝐴𝐴12(𝑥𝑥) = (𝐴𝐴1 ∩ 𝐴𝐴2)(𝑥𝑥) = min(𝐴𝐴1(𝑥𝑥),𝐴𝐴2(𝑥𝑥)). 
The probability distributions 𝑝𝑝12 corresponding to the intersection 

of the given Z-sets 𝐺𝐺12 is denoted as 𝐺𝐺12 = 𝐺𝐺1 ∩ 𝐺𝐺2,.  
Here the sets 𝐺𝐺𝑖𝑖 are defined as in union. 
Convolution 𝑝𝑝12 = 𝑝𝑝𝑍𝑍1∩𝑍𝑍2(𝑥𝑥) = 𝑝𝑝𝑍𝑍1(𝑥𝑥) ∘∩ 𝑝𝑝𝑍𝑍2(𝑥𝑥) = 𝑝𝑝1 ∘∩ 𝑝𝑝2  of 

probability distributions is defined as follows:  
𝑝𝑝12(𝑥𝑥) = 𝑝𝑝𝑍𝑍1∩𝑍𝑍2(𝑥𝑥) = 𝑝𝑝𝑍𝑍1(𝑥𝑥)𝑝𝑝𝑍𝑍2(𝑥𝑥)𝑝𝑝𝑋𝑋(𝑥𝑥)

∫ 𝑝𝑝𝑍𝑍1(𝑥𝑥)𝑝𝑝𝑍𝑍2(𝑥𝑥)𝑝𝑝𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑𝑋𝑋
,  

where 𝑝𝑝𝑋𝑋(𝑥𝑥) = 1
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

. 
Then 𝑍𝑍12 = (𝐴𝐴12,𝐵𝐵12,𝐺𝐺12), so  

𝐺𝐺12 = �𝑝𝑝12(𝑥𝑥): 𝑝𝑝12(𝑥𝑥) = 𝑝𝑝𝑍𝑍1∩𝑍𝑍2(𝑥𝑥) =

𝑝𝑝𝑍𝑍1(𝑥𝑥)𝑝𝑝𝑍𝑍2(𝑥𝑥)𝑝𝑝𝑋𝑋(𝑥𝑥)

∫ 𝑝𝑝𝑍𝑍1(𝑥𝑥)𝑝𝑝𝑍𝑍2(𝑥𝑥)𝑝𝑝𝑋𝑋(𝑥𝑥)𝑑𝑑𝑑𝑑𝑋𝑋
,𝑝𝑝𝑖𝑖(𝑥𝑥) ∈ 𝐺𝐺𝑖𝑖,   𝑥𝑥 ∈ 𝑋𝑋�. 

Thus, 
𝐵𝐵12 = {(𝜇𝜇𝑝𝑝12(𝑝𝑝12),𝜇𝜇𝐴𝐴12 ⋅ 𝑝𝑝12): 𝑝𝑝12 ∈ 𝐺𝐺12}. 

The third chapter ("Application of Z-Linear Programming in 
Decision Making") covers the solution of the Z-valued linear 
programming problem. Linear programming is a method of operations 
research often used in the fields of science, economics, business, 
management, and engineering. Unfortunately, despite the research and 
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application of various types of linear programming methods based on 
interval, fuzzy, generalized fuzzy, random numbers with different 
levels of generalization of information about the parameters of the 
model by engineers and researchers for more than sixty years, 
unfortunately, in linear programming, there is no method that takes 
into account the degree of reliability of information. With Z-valued 
decision variables and Z-valued parameters, we will look at the 
process of solving a linear programming problem based on Z-scoring 
The general formulation of the problem of linear programming based 
on Z-information is expressed as follows12: 

𝑍𝑍𝑓𝑓(𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛) = 𝑍𝑍𝑐𝑐1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑐𝑐2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑐𝑐𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 → max 
 (23)  

subject to 
𝑍𝑍𝑎𝑎11𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎12𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎1𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 ≺ 𝑍𝑍𝑏𝑏1 ,
𝑍𝑍𝑎𝑎21𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎22𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎2𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 ≺ 𝑍𝑍𝑏𝑏2 ,
. . .
𝑍𝑍𝑎𝑎𝑚𝑚1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎𝑚𝑚2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎𝑚𝑚𝑚𝑚𝑍𝑍𝑥𝑥𝑛𝑛 ≺ 𝑍𝑍𝑏𝑏𝑚𝑚 ,

    (24)  

𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛 ≻ 𝑍𝑍0     (25)  
With Z-valued decision variables and Z-valued parameters, we will 

look at the process of solving a linear programming problem based on 
Z-valuation. The general statement of the problem of linear 
programming based on Z-information is expressed as follows: 
𝑍𝑍𝑓𝑓(𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛) = 𝑍𝑍𝑐𝑐1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑐𝑐2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑐𝑐𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 → min 

 (26) 
𝑍𝑍𝑎𝑎11𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎12𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎1𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 ≺ 𝑍𝑍𝑏𝑏1 ,
𝑍𝑍𝑎𝑎21𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎22𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎2𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 ≺ 𝑍𝑍𝑏𝑏2 ,
. . .
𝑍𝑍𝑎𝑎𝑚𝑚1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎𝑚𝑚2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎𝑚𝑚𝑚𝑚𝑍𝑍𝑥𝑥𝑛𝑛 ≺ 𝑍𝑍𝑏𝑏𝑚𝑚 ,

   (27) 

𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛 ≻ 0𝑍𝑍.     (28) 
According to expressions (26)-(27), Z-inequalities can be 

transformed into the following problem: 

 
12 Aliev, R. A., Alizadeh, A. V., Huseynov, O. H., Jabbarova, K.I. Z-number based Linear 
Programming. Int. J. Intell. Syst. 
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𝑍𝑍𝑓𝑓(𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛) = 𝑍𝑍𝑐𝑐1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑐𝑐2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑐𝑐𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 → min 
 (29) 

Subject to 
𝑍𝑍𝑎𝑎11𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎12𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎1𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 ≤ 𝑍𝑍𝑏𝑏1 ,
𝑍𝑍𝑎𝑎21𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎22𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎2𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 ≤ 𝑍𝑍𝑏𝑏2 ,
. . .
𝑍𝑍𝑎𝑎𝑚𝑚1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎𝑚𝑚2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎𝑚𝑚𝑚𝑚𝑍𝑍𝑥𝑥𝑛𝑛 ≤ 𝑍𝑍𝑏𝑏𝑚𝑚 ,

   (30) 

𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛 ≥ 0𝑍𝑍.    (31) 

Here, the decision variables and parameters are expressed in Z-
numbers: 

𝑍𝑍𝑥𝑥𝑖𝑖 = (𝐴̃𝐴𝑥𝑥𝑖𝑖 ,𝐵𝐵�𝑥𝑥𝑖𝑖), 
𝑍𝑍𝑐𝑐𝑖𝑖 = (𝐴̃𝐴𝑐𝑐𝑖𝑖 ,𝐵𝐵�𝑐𝑐𝑖𝑖), 
 𝑍𝑍𝑎𝑎𝑖𝑖𝑖𝑖 = (𝐴̃𝐴𝑎𝑎𝑖𝑖𝑖𝑖 ,𝐵𝐵�𝑎𝑎𝑖𝑖𝑖𝑖), 
𝑍𝑍𝑏𝑏𝑗𝑗 = (𝐴̃𝐴𝑏𝑏𝑗𝑗 ,𝐵𝐵�𝑏𝑏𝑗𝑗),  
𝑖𝑖 = 1, . . . ,𝑛𝑛, 𝑗𝑗 = 1, . . . ,𝑚𝑚.  

Solution of the problem. To essentially understand the problem of 
linear programming based on Z-valuation, we need to clarify the 
meaning of the maximum 𝑍𝑍𝑓𝑓  and inequalities expressed by Z-
numbers. A method that can determine the optimal (max or min) value 
of 𝑍𝑍𝑓𝑓 is not found in the scientific literature. Therefore, we use a direct 
search method, called Differential Evolutionary Optimization (DEO) 
method, to solve the Z-LP problem (23)-(25).  

Definition 2. A Z-valued slack variable. Assume that in the linear 
programming problem based on the ith constraint Z- valuation 
∑ 𝑍𝑍𝑎𝑎𝑖𝑖𝑖𝑖𝑍𝑍𝑥𝑥𝑗𝑗 ≤ 𝑍𝑍𝑏𝑏𝑖𝑖
𝑛𝑛
𝑗𝑗=1 ,  

one uses 

∑ 𝑍𝑍𝑎𝑎𝑖𝑖𝑖𝑖𝑍𝑍𝑥𝑥𝑗𝑗 + 𝑍𝑍𝑥𝑥𝑛𝑛+𝑖𝑖 = 𝑍𝑍𝑏𝑏𝑖𝑖
𝑛𝑛
𝑗𝑗=1 ,  

if 𝑍𝑍𝑥𝑥𝑛𝑛+𝑖𝑖 ≥ 0𝑍𝑍, then the variable  𝑍𝑍𝑥𝑥𝑛𝑛+𝑖𝑖 based on Z- valuation is called 
a Z-valued slack variable. 

Definition 3. A Z-valued surplus variable. Assume that in the linear 
programming problem based on the ith Z-valued constraint 
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∑ 𝑍𝑍𝑎𝑎𝑖𝑖𝑖𝑖𝑍𝑍𝑥𝑥𝑗𝑗 ≥ 𝑍𝑍𝑏𝑏𝑖𝑖
𝑛𝑛
𝑗𝑗=1   

∑ 𝑍𝑍𝑎𝑎𝑖𝑖𝑖𝑖𝑍𝑍𝑥𝑥𝑗𝑗 − 𝑍𝑍𝑥𝑥𝑛𝑛+𝑖𝑖 = 𝑍𝑍𝑏𝑏𝑖𝑖 ,    𝑍𝑍𝑥𝑥𝑛𝑛+𝑖𝑖 ≥ 0𝑍𝑍𝑛𝑛
𝑗𝑗=1 ,  

The variable  𝑍𝑍𝑥𝑥𝑛𝑛+𝑖𝑖  based on Z-estimation is called Z-valued 
surplus variable. 

Definition 4. A Z-valued feasible solution. If any 𝑍𝑍𝑥𝑥  in (21) 
satisfies conditions (22)-(23), it is called a Z-valued feasible solution 
of (21)-(23). 

Definition 5. The Z-valued optimal solution. Assume that 𝑍𝑍𝑠𝑠 is the 
set of possible solutions of (23)-(25) based on Z-values. If 
𝑍𝑍𝑓𝑓(𝑍𝑍𝑋𝑋0) ≤𝑍𝑍 𝑍𝑍𝑓𝑓(𝑍𝑍𝑋𝑋) satisfies the conditions (24)-(25), then Z-valued 
feasible solution  𝑍𝑍𝑋𝑋0 ∈ 𝑍𝑍𝑠𝑠 is called Z-valued optimal solution of (23)-
(25).  

First, we add the Z-valued slack variables. 
𝑍𝑍𝑓𝑓(𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛) = 𝑍𝑍𝑐𝑐1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑐𝑐2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑐𝑐𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 → min 

subject to 
𝑍𝑍𝑎𝑎11𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎12𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎1𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 + 𝑍𝑍𝑥𝑥𝑛𝑛+1 = 𝑍𝑍𝑏𝑏1 ,
𝑍𝑍𝑎𝑎21𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎22𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎2𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 + 𝑍𝑍𝑥𝑥𝑛𝑛+2 = 𝑍𝑍𝑏𝑏2 ,
. . .
𝑍𝑍𝑎𝑎𝑚𝑚1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎𝑚𝑚2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎𝑚𝑚𝑚𝑚𝑍𝑍𝑥𝑥𝑛𝑛 + 𝑍𝑍𝑥𝑥𝑛𝑛+𝑚𝑚 = 𝑍𝑍𝑏𝑏𝑚𝑚 ,

 

𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛 ,𝑍𝑍𝑥𝑥𝑛𝑛+1 ,𝑍𝑍𝑥𝑥𝑛𝑛+2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛+𝑚𝑚 ≥ 0𝑍𝑍.  

Then we rewrite the problem under consideration in the appropriate 
equivalent form: 
𝑍𝑍𝑔𝑔�𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , … ,𝑍𝑍𝑥𝑥𝑛𝑛 ,𝑍𝑍𝑥𝑥𝑛𝑛+1 ,𝑍𝑍𝑥𝑥𝑛𝑛+2 , … ,𝑍𝑍𝑥𝑥𝑛𝑛+𝑚𝑚� = 𝑍𝑍𝑐𝑐1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑐𝑐2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑐𝑐𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 +
+(𝑍𝑍𝑏𝑏1 − (𝑍𝑍𝑎𝑎11𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎12𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎1𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 + 𝑍𝑍𝑥𝑥𝑛𝑛+1)) +
+(𝑍𝑍𝑏𝑏2 − (𝑍𝑍𝑎𝑎21𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎22𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎2𝑛𝑛𝑍𝑍𝑥𝑥𝑛𝑛 + 𝑍𝑍𝑥𝑥𝑛𝑛+2)) +
. . .
+(𝑍𝑍𝑏𝑏𝑚𝑚 − (𝑍𝑍𝑎𝑎𝑚𝑚1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎𝑚𝑚2𝑍𝑍𝑥𝑥2+. . . +𝑍𝑍𝑎𝑎𝑚𝑚𝑚𝑚𝑍𝑍𝑥𝑥𝑛𝑛 + 𝑍𝑍𝑥𝑥𝑛𝑛+𝑚𝑚)) → min

 

subject to 
𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛 ,𝑍𝑍𝑥𝑥𝑛𝑛+1 ,𝑍𝑍𝑥𝑥𝑛𝑛+2 , . . . ,𝑍𝑍𝑥𝑥𝑛𝑛+𝑚𝑚 ≥ 0𝑍𝑍   

To solve this optimization problem, we use the Differential 
Evolutionary Optimization algorithm. 
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Solution method. To solve the optimization problem, first all 
decision variables 𝑍𝑍𝑋𝑋 are initialized by generating random values in 
the interval [-1, 1]. To start the optimization, we first define the 
parameters of Differential Evolutionary Optimization (DEO), 𝑍𝑍𝑓𝑓  as 
the objective function of Differential Evolutionary Optimization 
(DEO) 𝑍𝑍𝑔𝑔�𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 , … ,𝑍𝑍𝑥𝑥𝑛𝑛 ,𝑍𝑍𝑥𝑥𝑛𝑛+1 ,𝑍𝑍𝑥𝑥𝑛𝑛+2 , … ,𝑍𝑍𝑥𝑥𝑛𝑛+𝑚𝑚�  and choose the 
population size. (typically, 10 times the optimization parameters, i.e. 
10*Npar). Then the Differential Evolutionary Optimization process 
begins. 

First, we define the template parameters (𝑍𝑍𝑥𝑥𝑥𝑥) of the measurement 
(Npar) to know the decision variables (𝑍𝑍𝑥𝑥). Then we need to define 
the parameters of the algorithm: mutation rate (F), crossover rate (CR) 
and population size (PN).  

We calculate the fitness function as an objective function. We 
randomly generate PN parameter vectors (for example, from the 
appropriate parameter space [-1, 1]) and create a population: 

P={𝑍𝑍𝑋𝑋1 ,𝑍𝑍𝑋𝑋2 , … ,𝑍𝑍𝑋𝑋𝑝𝑝𝑝𝑝}. 

In the end, if the result (either the specified number of generations 
should be obtained or the required error level should be obtained) is 
not as expected, a new set of parameters should be generated. We 
choose the next vector: 

𝑍𝑍𝑋𝑋𝑖𝑖 (i=1,...,PopSize). 

Then we take 3 different test vectors from 𝑃𝑃:𝑍𝑍𝑋𝑋𝑟𝑟1 ,𝑍𝑍𝑋𝑋𝑟𝑟2 ,𝑍𝑍𝑋𝑋𝑟𝑟3 so that 
each of them is different from the current vector 𝑍𝑍𝑋𝑋𝑖𝑖. We generate the 
test vector: 

𝑍𝑍𝑋𝑋𝑡𝑡 = 𝑍𝑍𝑋𝑋𝑟𝑟1 + 𝐹𝐹 ⋅ (𝑍𝑍𝑋𝑋𝑟𝑟2 − 𝑍𝑍𝑋𝑋𝑟𝑟3). 

We generate a new vector from the test vector 𝑍𝑍𝑋𝑋𝑡𝑡 . The individual 
vector parameters of 𝑍𝑍𝑋𝑋𝑡𝑡  are transformed into a new vector 𝑍𝑍𝑋𝑋𝑖𝑖 
together with the probability of the crossover norm. If the cost function 
of 𝑍𝑍𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 is better (or lower) than the cost function of 𝑍𝑍𝑋𝑋𝑖𝑖, the current 
𝑍𝑍𝑋𝑋𝑖𝑖, function is replaced by the population P of 𝑍𝑍𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 . Then, from the 
population P, we select the parameter vector with the best value 
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function (objective function) 𝑍𝑍𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . Then we extract the vectors of 
decision variables from 𝑍𝑍𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . 

Then we generate a new vector from the test vector 𝑆𝑆𝑡𝑡 . The 
individual vector parameters of 𝑆𝑆𝑡𝑡  are inherited together with the 
probability of the calama norm and assigned to the vector S_new. If 
the value function of 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 is better (or lower) than the value function 
of 𝑆𝑆𝑖𝑖, the current 𝑆𝑆𝑖𝑖 is replaced by the population P of 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛. Then from 
the population P we have the highest value function (𝑍𝑍𝑓𝑓). 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. we 
select the parameter vector (the best decision variables). Now we can 
extract all the decision variables from 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

In the fourth chapter ("Decision-making in the Z-information 
environment without using the utility function") methods of decision-
making in the Z-information environment without using the utility 
function were given. A common approach in the field of decision-
making methods is the application of utility theories. The main 
shortcoming of utility theories is that they are based on the evaluation 
of vector-valued alternatives by means of a scalar-valued quantity. 
This transformation always leads to loss of information and 
contradicts intuition. In real life, one does not switch from vector 
values to scalar values when comparing attributes for thinking or 
decision making. Although there are approaches based on a utility 
function described by a vector, there is no fundamental axiomatic 
theory. On the other hand, preferences such as human judgment are 
often vague and cannot be described with precise numerical values. 
However, existing works on vector-valued utility function-based 
approaches are devoted to situations characterized by perfect decision-
related information, which is rarely encountered in real-life decision-
making. However, utility-based approaches rely on restrictive 
assumptions such as independence or its various relaxed conditions, 
completeness, transitivity, regularity, and alike. A useful utility model 
based on very limited assumptions is simple but inadequate; models 
based on less restrictive assumptions make the utility model more 
complex though more adequate. There are also cases where utility 
functions cannot be applied (for example, lexicographic order). 
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The above cases, on the one hand, necessitate the development of 
new decision-making approaches based on direct pairwise comparison 
of vector-valued alternatives. On the other hand, new approaches must 
be based on linguistic comparison of alternatives to work with 
uncertain vector alternatives, since real-life alternatives are almost 
always significant to some degree. Linguistic modeling of preferences 
allows to reduce the set of Pareto optimal alternatives of alternatives 
or helps to obtain a narrowed subset of optimal alternatives when all 
relevant information is explained in natural language (NL). For this 
purpose, the concept of fuzzy optimality 13,  14 can be used as a means 
of redefining existing scientific concepts based on Computation with 
Words (CW). 

Definition 6. (Pareto dominance). For any two points 𝑓𝑓𝑖𝑖, 𝑓𝑓𝑘𝑘 ∈ 𝐴𝐴 
(candidate solutions), the alternative 𝑓𝑓𝑖𝑖 is considered Pareto superior 
(P-dominated) to 𝑓𝑓𝑘𝑘  if and only if the following conditions are 
satisfied: 

 𝑓𝑓𝑖𝑖(𝑠𝑠𝑗𝑗) ≥ 𝑓𝑓𝑘𝑘(𝑠𝑠𝑗𝑗) for each 𝑗𝑗 ∈ {1,2, . . . ,𝑀𝑀}, 

𝑓𝑓𝑖𝑖(𝑠𝑠𝑗𝑗′) > 𝑓𝑓𝑘𝑘(𝑠𝑠𝑗𝑗′) for at least one 𝑗𝑗′ ∈ {1,2, . . . ,𝑀𝑀. 

Definition 7. (Pareto Optimality). 𝑓𝑓∗ ∈ 𝐴𝐴  is considered Pareto 
Optimal if it is impossible to find 𝑓𝑓𝑖𝑖 ∈ 𝐴𝐴 such that the alternative 𝑓𝑓𝑖𝑖 is 
P-dominant with respect to 𝑓𝑓∗. 

Definition 8. (Pareto set and Pareto Front). We call the set of Pareto 
optimal solutions in the project area and the goal area  𝑆𝑆𝑃𝑃  Pareto 
optimal set and 𝐹𝐹𝑃𝑃 Pareto front, respectively. 

Statement of Problem. Suppose that 𝑆𝑆 = {𝑠̃𝑠1, 𝑠̃𝑠2, . . . , 𝑠̃𝑠𝑀𝑀} ⊂ ℰ𝑛𝑛 is 
a set of fuzzy natural states, and 𝑋𝑋 ⊂ ℰ𝑛𝑛 is a set of fuzzy results. Fuzzy 
in nature is used for fuzzy granulation of objective conditions when 
clean division of the latter is not possible due to the inaccuracy of the 
relevant information described in natural language. 𝐴𝐴  set of 

 
13 Zadeh, L. A. (2006). Generalized theory of uncertainty (GTU)—principal 
concepts and ideas. Computational Statistics and Data Analysis, 51, 15–46. 
14 Farina,M.,&Amato, P. (2004). A fuzzy definition of ”optimality” for many-
criteria optimization problems. IEEE Transactions on Systems, Man and 
Cybernetics, Part A: Systems and Humans, 34(3), 315–326. 



36 

alternatives 𝐴𝐴 is understood as a set of fuzzy functions f ̃ affecting 𝑆𝑆 
to 𝑋𝑋  15, 16. Linguistic information about the probabilities 𝑃𝑃�𝑙𝑙 of states 
of nature is expressed through fuzzy probabilities 𝑃𝑃�𝑗𝑗 of states 𝑠̃𝑠𝑗𝑗: 

𝑃𝑃�𝑙𝑙 = 𝑃𝑃�1/𝑠̃𝑠1 + 𝑃𝑃�2/𝑠̃𝑠2+. . . +𝑃𝑃�𝑀𝑀/𝑠̃𝑠𝑀𝑀, 
here 𝑃𝑃�𝑗𝑗 ∈ ℰ[0,1]

1 . 
Ambiguous preferences over ambiguous alternatives are modeled 

through a linguistic preference relation over 𝐴𝐴. For this, it is sufficient 
to define the set of terms  𝑇𝑇 = (𝑇𝑇1, . . . ,𝑇𝑇𝐾𝐾) for the linguistic variable 
"precedence degree" 17, 18. The conditions can be labeled as "equality", 
"low preference", "high preference" and each can be described by a 
fuzzy number set on a certain scale, for example in the interval [0,1] 
or [0,10]. The linguistic superiority of 𝑓𝑓𝑖𝑖 over 𝑓𝑓𝑘𝑘 is written as 𝑓𝑓𝑖𝑖 ≿𝑙𝑙 𝑓𝑓𝑘𝑘. 
This means that one can find 𝑇𝑇𝑖𝑖 ∈ 𝑇𝑇 a linguistic degree 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓𝑖𝑖 ≿𝑙𝑙 𝑓𝑓𝑘𝑘) 
such that the preference degree of alternative 𝑓𝑓𝑖𝑖 over 𝑓𝑓𝑘𝑘 is expressed 
as 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓𝑖𝑖 ≿𝑙𝑙 𝑓𝑓𝑘𝑘) ≈ 𝑇𝑇𝑖𝑖. 

Thus, fuzzy decision-making with imperfect information is 
described as a quadruple �𝑆𝑆,𝑃𝑃�𝑙𝑙 ,𝑋𝑋,𝐴𝐴�. The decision-making problem 
consists of determining ≿𝑙𝑙 . This is described by the degrees of 
optimality of alternatives. The degree of optimality of the alternative 
𝑓𝑓𝑖𝑖 is denoted 𝑑𝑑𝑑𝑑(𝑓𝑓𝑖𝑖) and is the overall degree to which 𝑓𝑓𝑖𝑖 is preferred 
over all other alternatives. The decision-making problem consists in 

 
15 Zadeh, L.A., Aliev, R.A., Fazlollahi, B.,Alizadeh, A.V., Guirimov,B.G.,&Huseynov, 
O.H. (2009).Decision Theory with Imprecise Probabilities. Contract on “Application of 
Fuzzy Logic and Soft Computing to communications, planning and management of 
uncertainty”. Technical report, Berkeley, Baku, 95 p. http://www.raliev.com/report.pdf 
16 Aliev, R. A., Alizadeh, A. V., Guirimov, B. G., & Huseynov, O. H. (2010). Precisiated 
information-based approach to decision making with imperfect information. In Proceedings 
of the ninth international conference on application of fuzzy systems and soft computing, 
2010, ICAFS-2010 (pp. 91–103). Prague, Czech Republic. 
17 Borisov, A. N., Alekseyev, A. V., Merkuryeva, G. V., Slyadz, N. N., & Gluschkov, V. I. 
(1989). Fuzzy information processing in decision making systems. Moscow: Radio i Svyaz 
(in Russian). 
18 Liu, W. J., & Zeng, L. (2008). A new TOPSIS method for fuzzy multiple attribute group 
decision making problem. Journal of Guilin University of Electronic Technology, 28(1), 59–
62. 
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determining the optimal alternative 𝑓𝑓∗ ∈ 𝐴𝐴  with the degree of 
optimality 𝑑𝑑𝑑𝑑�𝑓𝑓∗� = max 

𝑓̃𝑓𝑖𝑖∈𝐴𝐴
 𝑑𝑑𝑑𝑑(𝑓𝑓𝑖𝑖). 

Solution method. The fuzzy Pareto optimality (FPO) formalism 
suggested in 19 is developed for a perfect information structure, i.e. 
when all the decision relevant information is represented by precise 
numerical evaluations. From the other side, this approach is developed 
for MADM. We will extend the FPO formalism for the considered 
framework of decision making with imperfect information. The 
method of solution is described below. 

The solution to the considered problem consists in determining the 
degree of linguistic superiority of 𝑓𝑓𝑖𝑖 over 𝑓𝑓𝑘𝑘 for all 𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘 ∈ 𝐴𝐴 for direct 
comparison of 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑘𝑘 alternatives described by the vector.  

At the first stage, the value of fuzzy probabilities 𝑃𝑃�𝑗𝑗  should be 
determined for each fuzzy state 𝑠̃𝑠𝑗𝑗  of nature. However, partial 
information expressed by fuzzy probabilities can be given for all but 
one of the fuzzy states. An unknown fuzzy probability cannot be 
assigned, but must be calculated based on known fuzzy probabilities. 
Since the computation of the unknown fuzzy probability requires the 
construction of a membership function, it is an optimization problem. 
The problem of calculating the unknown fuzzy probability 𝑃𝑃�(𝑆̃𝑆𝑗𝑗) = 𝑃𝑃�𝑗𝑗 
is formulated as follows according to the rule proposed in 20 

𝜇𝜇𝑃𝑃�𝑗𝑗(𝑝𝑝𝑗𝑗) = sup𝜌𝜌 min
 𝑗𝑗′={1,...,𝑗𝑗−1,𝑗𝑗+1,...,𝑛𝑛}

(𝜇𝜇𝑃𝑃�𝑗𝑗′(∫S
𝜇𝜇𝑠̃𝑠𝑗𝑗′(𝑠𝑠)𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑)) 

∫
S
𝜇𝜇𝑠̃𝑠𝑗𝑗(𝑠𝑠)𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑 = 𝑝𝑝𝑗𝑗, ∫

S
𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑 = 1. 

Here, 𝜇𝜇𝑠̃𝑠𝑗𝑗(𝑠𝑠) is the membership function of the fuzzy state 𝑠̃𝑠𝑗𝑗. Thus, 
the unknown probability 𝑃𝑃�𝑗𝑗 for the state 𝑠̃𝑠𝑗𝑗 is built not only on the basis 
of probabilities given for other states of nature, but also on the basis 

 
19 Farina,M.,&Amato, P. (2004). A fuzzy definition of ”optimality” for many-criteria 
optimization problems. IEEE Transactions on Systems, Man and Cybernetics, Part A: 
Systems and Humans, 34(3), 315–326. 
20 Zadeh, L. A. (2006). Generalized theory of uncertainty (GTU)-principal 
concepts and ideas. Computational Statistics and Data Analysis, 51, 15–46. 
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of imperfect information about the state 𝑠̃𝑠𝑗𝑗 itself. After 𝑃𝑃�𝑗𝑗 is found, the 
linguistic probability distribution 𝑃𝑃�𝑙𝑙 for all states 𝑠̃𝑠𝑗𝑗 is determined: 

𝑃𝑃�𝑙𝑙 = 𝑃𝑃�1/𝑠̃𝑠1 + 𝑃𝑃�2/𝑠̃𝑠2+. . . +𝑃𝑃�𝑀𝑀/𝑠̃𝑠𝑀𝑀. 

An important problem that arises when calculating 𝑃𝑃�𝑙𝑙 is testing for 
goodness-of-fit, completeness, and redundancy. In the second stage, 
taking into account the distribution of adaptive, complete and non-
redundant fuzzy probabilities over all 𝑠̃𝑠𝑗𝑗  fuzzy states of nature, the 
superiority, equivalence of 𝑓𝑓𝑖𝑖  over 𝑓𝑓𝑘𝑘  for all situations, taking into 
account the fuzzy probability of each fuzzy and it is necessary to 
determine the general degrees of weakness. 

The corresponding overall 𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑛𝑛𝑛𝑛𝑛𝑛 , and 𝑛𝑛𝑛𝑛𝑛𝑛  degrees of 
superiority, equivalence, and weakness of 𝑓𝑓𝑖𝑖  to 𝑓𝑓𝑘𝑘  are determined 
based on the differences between the fuzzy results of 𝑓𝑓𝑖𝑖  and 𝑓𝑓𝑘𝑘  for 
each fuzzy state of nature as follows: 

𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘) = ∑ 𝜇𝜇𝑏𝑏
𝑗𝑗𝑀𝑀

𝑗𝑗=1 (𝑔𝑔𝑔𝑔𝑔𝑔((𝑓𝑓𝑖𝑖(𝑠̃𝑠𝑗𝑗) − 𝑓𝑓𝑘𝑘(𝑠̃𝑠𝑗𝑗)) ⋅ 𝑃𝑃�𝑗𝑗)), 

𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) = ∑ 𝜇𝜇𝑒𝑒
𝑗𝑗𝑀𝑀

𝑗𝑗=1 (𝑔𝑔𝑔𝑔𝑔𝑔((𝑓𝑓𝑖𝑖(𝑠̃𝑠𝑗𝑗) − 𝑓𝑓𝑘𝑘(𝑠̃𝑠𝑗𝑗)) ⋅ 𝑃𝑃�𝑗𝑗)), 

𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘) = ∑ 𝜇𝜇𝑤𝑤
𝑗𝑗𝑀𝑀

𝑗𝑗=1 (𝑔𝑔𝑔𝑔𝑔𝑔((𝑓𝑓𝑖𝑖(𝑠̃𝑠𝑗𝑗) − 𝑓𝑓𝑘𝑘(𝑠̃𝑠𝑗𝑗)) ⋅ 𝑃𝑃�𝑗𝑗)). 

Here, 𝜇𝜇𝑏𝑏
𝑗𝑗 , 𝜇𝜇𝑒𝑒

𝑗𝑗 , 𝜇𝜇𝑤𝑤
𝑗𝑗  are the membership functions for “better”, 

“equivalent” and “worse” evaluations, respectively 21. 
𝜇𝜇𝑏𝑏
𝑗𝑗 ,   𝜇𝜇𝑒𝑒

𝑗𝑗 , 𝜇𝜇𝑤𝑤
𝑗𝑗  corresponding to state 𝑗𝑗  are determined so that the 

Ruspini condition is satisfied. This condition is expressed as follows: 
𝑛𝑛𝑛𝑛𝑛𝑛�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘� + 𝑛𝑛𝑛𝑛𝑛𝑛�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘� + 𝑛𝑛𝑛𝑛𝑛𝑛�𝑓𝑓𝑖𝑖, 𝑓𝑓𝑘𝑘� = 

= ∑ (𝜇𝜇𝑏𝑏
𝑗𝑗 + 𝜇𝜇𝑒𝑒

𝑗𝑗 + 𝜇𝜇𝑤𝑤
𝑗𝑗 )𝑀𝑀

𝑗𝑗=1 = 𝑀𝑀. 

Based on 𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘), 𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘), and 𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘), the (1 − 𝑘𝑘𝑘𝑘)-
dominance degree is determined. These concepts express the 

 
21 Farina,M.,&Amato, P. (2004). A fuzzy definition of ”optimality” for many-criteria 
optimization problems. IEEE Transactions on Systems, Man and Cybernetics, Part A: 
Systems and Humans, 34(3), 315–326. 
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necessary and sufficient condition for the (1 − 𝑘𝑘𝑘𝑘)-dominance of 𝑓𝑓𝑖𝑖 
with respect to 𝑓𝑓𝑘𝑘:  

𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) < 𝑀𝑀,  𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) ≥ 𝑀𝑀−𝑛𝑛𝑛𝑛𝑛𝑛(𝑓̃𝑓𝑖𝑖,𝑓̃𝑓𝑘𝑘)
𝑘𝑘𝑘𝑘+1

, 

where 𝑘𝑘𝑘𝑘 ∈ [0,1]. 
To determine the 𝑘𝑘𝑘𝑘 corresponding to the largest value of the (1 −

𝑘𝑘𝑘𝑘)-dominance of 𝑓𝑓𝑖𝑖 with respect to 𝑓𝑓𝑘𝑘, the function 𝑑𝑑 is defined as 
follows22: 

𝑑𝑑�𝑓𝑓𝑖𝑖, 𝑓𝑓𝑘𝑘� = 

= �
0,                                           𝑖𝑖𝑖𝑖   𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) ≤ 𝑀𝑀−𝑛𝑛𝑛𝑛𝑛𝑛(𝑓̃𝑓𝑖𝑖,𝑓̃𝑓𝑘𝑘)

2
2⋅𝑛𝑛𝑛𝑛𝑛𝑛(𝑓̃𝑓𝑖𝑖,𝑓̃𝑓𝑘𝑘)+𝑛𝑛𝑛𝑛𝑛𝑛(𝑓̃𝑓𝑖𝑖,𝑓̃𝑓𝑘𝑘)−𝑀𝑀

𝑛𝑛𝑛𝑛𝑛𝑛(𝑓̃𝑓𝑖𝑖,𝑓̃𝑓𝑘𝑘)
,     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

.  

For a given 𝑑𝑑, the desired largest rate 𝑘𝑘𝑘𝑘 is found as 1 − 𝑑𝑑(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘).  

The statement 𝑑𝑑(𝑓𝑓𝑖𝑖, 𝑓𝑓𝑘𝑘) = 1 means that 𝑓𝑓𝑖𝑖 is Pareto superior to 𝑓𝑓𝑘𝑘, 
and 𝑑𝑑(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) = 0 means that 𝑓𝑓𝑖𝑖 is not Pareto superior to 𝑓𝑓𝑘𝑘. 

In the fuzzy optimality formalism, instead of 𝑓𝑓∗ Pareto optimality 
concept, 𝑓𝑓∗ Pareto optimality concept with degree 𝑘𝑘𝑘𝑘 is introduced. 
𝑓𝑓∗  is considered 𝑘𝑘𝑘𝑘  optimal if and only if 𝑓𝑓𝑖𝑖 ∈  𝐴𝐴 cannot be found 
such that the alternative 𝑓𝑓𝑖𝑖 is (1 − 𝑘𝑘𝑘𝑘)-dominant with respect to 𝑓𝑓∗.  

The basic idea of the concept of fuzzy optimality is that the 
optimality degree 𝑑𝑑𝑑𝑑(𝑓𝑓∗) of the Pareto optimality of 𝑓𝑓∗ is defined as: 

𝑑𝑑𝑑𝑑(𝑓𝑓∗) = 1 − max
𝑓̃𝑓𝑖𝑖∈𝐴𝐴

𝑑𝑑(𝑓𝑓𝑖𝑖, 𝑓𝑓∗). 

Thus, the degree 𝑑𝑑𝑑𝑑(𝑓𝑓∗) is a degree resulting from considering the 
preference degrees of 𝑓𝑓∗ over all alternatives. 

The function 𝑑𝑑𝑑𝑑 can be considered as the membership function of 
a fuzzy set describing the concept of 𝑘𝑘𝑘𝑘-optimality. 

 
22 Rafik A. Aliev, Witold Pedrycz, A.V. Alizadeh, Oleg H. Huseynov. Fuzzy optimality 
based decision making under imperfect information without utility, Journal Fuzzy 
Optimization and Decision Making, Kluwer Academic Publishers Hingham, MA, USA, In: 
FO & DM, https://doi.org/10.1007/s10700-013-9160-2, 2013, Volume 12 Issue 4 

http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Rafik+A.+Aliev%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Witold+Pedrycz%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=by%3A%22Oleg+H.+Huseynov%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=in%3A%22FO+%26+DM%22
https://doi.org/10.1007/s10700-013-9160-2
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=572DAC8C146ED9FFD70AEEFACD696A7B?search=&q=in%3A%222013%22
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We call the set of 𝑘𝑘𝑘𝑘 -Pareto optimal solutions in the project area 
and the goal area as 𝑆𝑆𝑘𝑘𝑘𝑘  Pareto optimal set and 𝑘𝑘𝑘𝑘  -optimal ℱ𝑘𝑘𝑘𝑘 
Pareto front, respectively. 

Assume that 𝜇𝜇𝐷𝐷(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) is the membership function defined as: 

𝜇𝜇𝐷𝐷(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) = 𝜑𝜑𝜇𝜇𝐷𝐷(𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘),𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘),𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘)). 

Then 𝜇𝜇𝐷𝐷(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) is a fuzzy preference relation if for each 𝛼𝛼 ∈ [0,1] 
𝜇𝜇𝐷𝐷(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) > 𝛼𝛼 from the expression 𝑓𝑓𝑖𝑖 to 𝑓𝑓𝑘𝑘 (1 − 𝑘𝑘𝑘𝑘)-dominance. 

In the special case, 𝜑𝜑𝜇𝜇𝐷𝐷 is defined as: 

𝜑𝜑𝜇𝜇𝐷𝐷 = 2⋅𝑛𝑛𝑛𝑛𝑛𝑛(𝑓̃𝑓𝑖𝑖,𝑓̃𝑓𝑘𝑘)+𝑛𝑛𝑛𝑛𝑛𝑛(𝑓̃𝑓𝑖𝑖,𝑓̃𝑓𝑘𝑘)
2𝑀𝑀

. 

A membership function 𝜇𝜇𝐷𝐷(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘)  represents the fuzzy 
optimality relation if for any 0 ≤ 𝑘𝑘𝑘𝑘 ≤ 1. 𝑓𝑓∗ belongs to the 𝑘𝑘𝑘𝑘 -cut of 
𝜇𝜇𝐷𝐷 if and only if there is no 𝑓𝑓𝑖𝑖 ∈ 𝐴𝐴 such that  

𝜇𝜇𝐷𝐷(𝑓𝑓𝑖𝑖,𝑓𝑓∗) > 𝑘𝑘𝑘𝑘. 

At the third stage, on the base of values of 𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘), 𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘), 
and 𝑛𝑛𝑛𝑛𝑛𝑛(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘), the value of degree of optimality 𝑑𝑑𝑑𝑑(𝑓𝑓𝑖𝑖) as a degree 
of membership to a fuzzy Pareto optimal set, is determined by using 
formulas (17)–(21) for each 𝑓𝑓𝑖𝑖 ∈ 𝐴𝐴 . The obtained 𝑑𝑑𝑑𝑑()  allows for 
justified determination of linguistic preference relation _≿𝑙𝑙 over A. 

At the fourth stage, the degree 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓𝑖𝑖 ≿𝑙𝑙 𝑓𝑓𝑘𝑘) of preference of 𝑓𝑓𝑖𝑖 to 
𝑓𝑓𝑘𝑘  for any 𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘 ∈ 𝐴𝐴  should be determined based on 𝑑𝑑𝑑𝑑() . For 
simplicity, one can calculate 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓𝑖𝑖 ≿𝑙𝑙 𝑓𝑓𝑘𝑘) as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓𝑖𝑖 ≿𝑙𝑙 𝑓𝑓𝑘𝑘) = 𝑑𝑑𝑑𝑑(𝑓𝑓𝑖𝑖) − 𝑑𝑑𝑑𝑑(𝑓𝑓𝑘𝑘). 

The ranking of alternatives is discussed in detail in Chapter 5. 

In the fifth chapter ("The problem of ranking decisions in the Z-
information environment based on the Pareto optimality principle"), 
the solution of decision ranking issues in the Z-information 
environment based on the Pareto optimality principle is considered. 
Decision-making based on the comparison of discrete Z-numbers, 
including decision-making that does not include the utility function, a 
method of comparison of Z-numbers based on the principle of fuzzy 
optimality is given, examples of comparison of Z-numbers are shown, 
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a model of decision-making in the conditions of Z-information is 
proposed, Practical methods of decision-making based on Z-
information are proposed, a multi-criteria decision-making method 
based on linear mathematical programming for Z-quantities is 
explained. 

Comparison of Z-numbers based on fuzzy optimality principle. 
Ranking of discrete Z-numbers is a necessary operation in arithmetic 
of Z-numbers and is a challenging practical issue. In this section we 
suggest an approach to ranking of discrete Z-numbers. 

In contrast to real numbers, Z-numbers are ordered pairs, for 
ranking of which there can be no unique approach.  

For purpose of comparison, we suggest to consider a Z-number as 
a pair of values of two attributes – one attribute measures value of a 
variable, the other one measures the associated reliability. Then it will 
be adequate to compare Z-numbers as multiattribute alternatives. 
Basic principle of comparison of multiattribute alternatives is the 
Pareto optimality principle which is based on a counterintuitive 
assumption that all alternatives within a Pareto optimal set are 
considered equally optimal. The fuzzy Pareto optimality (FPO) 
concept23 fits very well multiattribute decision making problems. This 
concept is an implementation of the ideas of CW-based redefinitions 
of the existing scientific concepts 24. In this approach, by directly 
comparing alternatives, one arrives at total degrees to which one 
alternative is better than, is equivalent to and is worse than another 
one. These degrees are determined as graded sums of differences 
between attribute values for considered alternatives 25 , 26 , 27 . Such 

 
23 Farina, M., and Amato, P. (2004). A fuzzy definition of "optimality" for many-criteria 
optimization problems, IEEE T. Syst. Man Cy. A: Systems and Humans, 34(3), pp. 315-326. 
24 Zadeh, L. A. (2006). Generalized theory of uncertainty (GTU) – principal concepts and 
ideas, Comput. Stat. DataAn., 51, pp. 15-46 
25 Aliev, R. A. (2013) Fundamentals of the Fuzzy Logic-Based Generalized Theory of 
Decisions. (Springer, NewYork, Berlin). 
26 Aliev, R. A., Pedrycz, W., Alizadeh, A. V. and Huseynov, O. H. (2013). Fuzzy optimality 
based decision making under imperfect information without utility, Fuzzy Optim. Decis. 
Ma., vol. 12, issue 4, pp. 357-372 
27 Farina, M., and Amato, P. (2004). A fuzzy definition of "optimality" for many-criteria 
optimization problems, IEEE T. Syst. Man Cy. A: Systems and Humans, 34(3), pp. 315-326. 
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comparison is closer to the way humans compare alternatives by 
confronting their attribute values. 

We suggest to consider comparison of Z-numbers on the base of 
FPO principle as follows. Let Z-numbers 𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1)  and 𝑍𝑍2 =
(𝐴𝐴2,𝐵𝐵2) be given. It is needed to compare the corresponding 
components of these Z-numbers. For this purpose, it is needed to 
calculate the functions 𝑛𝑛𝑏𝑏, 𝑛𝑛𝑒𝑒, 𝑛𝑛𝑤𝑤 which evaluate how much one of 
the Z-numbers is better, equivalent and worse than the other one with 
respect to the first and the second components 𝐴𝐴 and 𝐵𝐵 . The total 
degree 𝑛𝑛𝑏𝑏 measures the number of components with respect to which 
𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1) dominates 𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2) (minimum is 0, maximum is 
2). The total degree 𝑛𝑛𝑤𝑤  measures the number of components with 
respect to which 𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1)  is dominated by 𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2) 
(minimum is 0, maximum is 2). The total degree 𝑛𝑛𝑒𝑒  measures the 
number of components with respect to which 𝑍𝑍1 = (𝐴𝐴1,𝐵𝐵1)  is 
equivalent to 𝑍𝑍2 = (𝐴𝐴2,𝐵𝐵2) (minimum is 0, maximum is 2). 

The functions 𝑛𝑛𝑏𝑏, 𝑛𝑛𝑒𝑒, 𝑛𝑛𝑤𝑤 are defined as follows: 

𝑛𝑛𝑏𝑏(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) = 𝑃𝑃𝑏𝑏(𝛿𝛿𝐴𝐴
𝑖𝑖,𝑗𝑗) + 𝑃𝑃𝑏𝑏(𝛿𝛿𝐵𝐵

𝑖𝑖,𝑗𝑗), 

𝑛𝑛𝑒𝑒(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) = 𝑃𝑃𝑒𝑒(𝛿𝛿𝐴𝐴
𝑖𝑖,𝑗𝑗) + 𝑃𝑃𝑒𝑒(𝛿𝛿𝐵𝐵

𝑖𝑖,𝑗𝑗), 

𝑛𝑛𝑤𝑤(𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗) = 𝑃𝑃𝑤𝑤(𝛿𝛿𝐴𝐴
𝑖𝑖,𝑗𝑗) + 𝑃𝑃𝑤𝑤(𝛿𝛿𝐵𝐵

𝑖𝑖,𝑗𝑗), 

where 𝛿𝛿𝐴𝐴
𝑖𝑖,𝑗𝑗 = 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑗𝑗 ,𝛿𝛿𝐵𝐵

𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖 − 𝐵𝐵𝑗𝑗 , 𝑖𝑖, 𝑗𝑗 = 1,2, 𝑖𝑖 ≠ 𝑗𝑗. The meaning 
of these functions is as follows. As superiority, equivalence and 
inferiority of one Z-number with respect to the other is actually a 
matter of a degree for human intuition, 𝛿𝛿𝐴𝐴

𝑖𝑖,𝑗𝑗 = 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑗𝑗 and 𝛿𝛿𝐵𝐵
𝑖𝑖,𝑗𝑗 = 𝐵𝐵𝑖𝑖 −

𝐵𝐵𝑗𝑗 may be evaluated by using the function: 

𝑃𝑃𝑙𝑙�𝛿𝛿𝐴𝐴
𝑖𝑖,𝑗𝑗� =

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛿𝛿𝐴𝐴
𝑖𝑖,𝑗𝑗|𝑛𝑛𝑙𝑙�

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛿𝛿𝐴𝐴
𝑖𝑖,𝑗𝑗|𝑛𝑛𝑡𝑡�𝑡𝑡∈{𝑏𝑏,𝑒𝑒,𝑤𝑤}

,  𝑃𝑃𝑙𝑙(𝛿𝛿𝐵𝐵
𝑖𝑖,𝑗𝑗) =

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛿𝛿𝐵𝐵
𝑖𝑖,𝑗𝑗|𝑛𝑛𝑙𝑙�

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛿𝛿𝐵𝐵
𝑖𝑖,𝑗𝑗|𝑛𝑛𝑡𝑡�𝑡𝑡∈{𝑏𝑏,𝑒𝑒,𝑤𝑤}

, 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is a possibility measure28.  

 
28 Aliev, R. A. (2013) Fundamentals of the Fuzzy Logic-Based Generalized Theory of 
Decisions. (Springer, NewYork, Berlin). 
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The function 𝑃𝑃𝑙𝑙()  is therefore used as a weighted possibility 
measure. As ∑ 𝑃𝑃𝑙𝑙(𝛿𝛿𝑘𝑘

𝑖𝑖,𝑗𝑗)𝑡𝑡∈{𝑏𝑏,𝑒𝑒,𝑤𝑤} = 1 will always hold, one will always 
have 𝑛𝑛𝑏𝑏(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) + 𝑛𝑛𝑒𝑒(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) + 𝑛𝑛𝑤𝑤(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) = 𝑁𝑁 , where 𝑁𝑁  is the 
number of components of a Z-number, i.e. 𝑁𝑁 = 2.  

Next, on the base of 𝑛𝑛𝑏𝑏 ,  𝑛𝑛𝑒𝑒 ,𝑛𝑛𝑤𝑤 , the (1 − 𝑘𝑘) -dominance is 
determined as dominance in the terms of its degree. This concept 
suggests that 𝑍𝑍1 (1 − 𝑘𝑘)-dominates 𝑍𝑍2 iff  

𝑛𝑛𝑒𝑒(𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗) < 2, 𝑛𝑛𝑏𝑏(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) ≥ 2−𝑛𝑛𝑒𝑒(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗)
𝑘𝑘+1

, 

with 𝑘𝑘 ∈ [0,1]. 
Next it is needed to determine the greatest 𝑘𝑘 such that 𝑍𝑍𝑖𝑖  Pareto 

dominates 𝑍𝑍𝑗𝑗 to the degree(1 − 𝑘𝑘). For this purpose, a function 𝑑𝑑 is 
introduced 29: 
𝑑𝑑�𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗� = 

=

⎩
⎨

⎧0,                                           𝑖𝑖𝑖𝑖   𝑛𝑛𝑏𝑏(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) ≤
2 − 𝑛𝑛𝑒𝑒(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗)

2
2 ⋅ 𝑛𝑛𝑏𝑏(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) + 𝑛𝑛𝑒𝑒(𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗) − 2

𝑛𝑛𝑏𝑏(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗)
,     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

Given a value of 𝑑𝑑 , the desired greatest 𝑘𝑘  is found as 𝑘𝑘 = 1 −
𝑑𝑑(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗), and then (1 − 𝑘𝑘) = 𝑑𝑑(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗). 𝑑𝑑(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) = 1 implies Pareto 
dominance of 𝑍𝑍𝑖𝑖  over 𝑍𝑍𝑗𝑗 , whereas 𝑑𝑑(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) = 0  implies no Pareto 
dominance of 𝑍𝑍𝑖𝑖  over 𝑍𝑍𝑗𝑗 . The degree of optimality 𝑑𝑑𝑑𝑑(𝑍𝑍𝑖𝑖)  is 
determined as follows: 

𝑑𝑑𝑑𝑑(𝑍𝑍𝑖𝑖) = 1 − 𝑑𝑑(𝑍𝑍𝑗𝑗 ,𝑍𝑍𝑖𝑖). 

Thus, we can consider 𝑑𝑑𝑑𝑑(𝑍𝑍𝑖𝑖) as the degree to which one Z-number 
is higher than the other one. Then  
𝑍𝑍𝑖𝑖 > 𝑍𝑍𝑗𝑗  iff 𝑑𝑑𝑑𝑑(𝑍𝑍𝑖𝑖) > 𝑑𝑑𝑑𝑑(𝑍𝑍𝑗𝑗), 

𝑍𝑍𝑖𝑖 < 𝑍𝑍𝑗𝑗  iff 𝑑𝑑𝑑𝑑(𝑍𝑍𝑖𝑖) < 𝑑𝑑𝑑𝑑(𝑍𝑍𝑗𝑗), 

 
29 A.V. Alizadeh, Application of the Fuzzy Optimality Concept to Decision Making, 
Advances in Intelligent Systems and Computing Springer, Cham. 
https://doi.org/10.1007/978-3-030-35249-3_69, 2019, 542-54, 
https://link.springer.com/chapter/10.1007%2F978-3-030-35249-3_69 

https://doi.org/10.1007/978-3-030-35249-3_69
https://link.springer.com/chapter/10.1007%2F978-3-030-35249-3_69
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𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑗𝑗 otherwise. 
Recall that comparison of fuzzy numbers is a matter of a degree due 

to related vagueness. For Z-numbers, which are more complex 
constructs characterized by possibilistic-probabilistic uncertainty, 
degree-based comparison is even more desirable. 

The suggested approach may be considered as basis of a human-
oriented ranking of Z-numbers. In this viewpoint, we suggest to take 
into account degree of pessimism 𝛽𝛽 ∈ [0,1] as a mental factor which 
influences a choice of a preferred Z-number. The degree of pessimism 
is submitted by a human observer who wishes to compare the 
considered Z-numbers but does not completely rely on the results 
obtained by the above mentioned FPO approach. In this viewpoint, 
given 𝑑𝑑𝑑𝑑(𝑍𝑍𝑗𝑗) ≤ 𝑑𝑑𝑑𝑑(𝑍𝑍𝑖𝑖), we define for two Z-numbers 𝑍𝑍1 and 𝑍𝑍2: 

𝑟𝑟(𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗) = 𝛽𝛽𝛽𝛽𝛽𝛽(𝑍𝑍𝑗𝑗) + (1 − 𝛽𝛽)𝑑𝑑𝑑𝑑(𝑍𝑍𝑖𝑖). 

Then  
𝑍𝑍𝑖𝑖 > 𝑍𝑍𝑗𝑗   iff  𝑟𝑟(𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗) > 1

2
(𝑑𝑑𝑑𝑑(𝑍𝑍𝑖𝑖) + 𝑑𝑑𝑑𝑑(𝑍𝑍𝑗𝑗))

𝑍𝑍𝑖𝑖 < 𝑍𝑍𝑗𝑗   iff  𝑟𝑟(𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗) < 1
2

(𝑑𝑑𝑑𝑑(𝑍𝑍𝑖𝑖) + 𝑑𝑑𝑑𝑑(𝑍𝑍𝑗𝑗))
and
𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑗𝑗   otherwise ⎭

⎪
⎬

⎪
⎫

  

The degree of pessimism 𝛽𝛽  is submitted by a human being and 
adjust ranking of Z-numbers to reflect human attitude to the 𝑑𝑑𝑑𝑑 
degree-based comparison. This attitude may result from the different 
importance of 𝐴𝐴  and 𝐵𝐵  components for a human being and other 
issues.  

 
The sixth chapter ("Application of the proposed decision-making 

methods") is devoted to the application and simulation of decision-
making methods in the Z-information environment. The results of the 
application of the proposed methods to the solution of standard 
decision-making problems such as decision-making for the supply 
problem, decision-making for the multi-criteria marketing problem, 
optimal planning of the company's production based on Z-line 
programming.  
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6.1. Decision making for the supply issue.  
Consider the issue of decision-making based on imprecise 

information as a problem of supplier selection taking into account 
different economic conditions. The set of alternatives is represented 
by the set of five suppliers: 𝐴𝐴 = {𝑓𝑓1, 𝑓𝑓2,𝑓𝑓3,𝑓𝑓4,𝑓𝑓5}. The set of natural 
states is described by five possible economic conditions: 𝑆𝑆 =
{𝑠̃𝑠1, 𝑠̃𝑠2, 𝑠̃𝑠3, 𝑠̃𝑠4, 𝑠̃𝑠5} . Each economic situation 𝑠̃𝑠𝑗𝑗  is characterized by 
demands on aspects of supplier profitability, relationship closeness, 
technological capabilities, compatibility quality, and conflict 
resolution. Fuzzy evaluations of the consequences of alternatives in 
economic conditions are given in the following table (Table 1): 

Table 1. Table of fuzzy results 
 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠4 𝑠𝑠5 
𝑓𝑓1 (5.0,7.0,9.0) (7.0,9.0,10.0) (3.0,5.0,7.0) (9.0,10.0,10.0) (5.0,7.0,9.0) 
𝑓𝑓2 (1.0,3.0,5.0) (3.0,5.0,7.0) (5.0,7.0,9.0) (7.0,9.0,10.0) (1.0,3.0,5.0) 
𝑓𝑓3 (3.0,5.0,7.0) (5.0,7.0,9.0) (7.0,9.0,10.0) (5.0,7.0,9.0) (3.0,5.0,7.0) 
𝑓𝑓4 (0.0,1.0,3.0) (1.0,3.0,5.0) (0.0,1.0,3.0) (1.0,3.0,5.0) (7.0,9.0,10.0) 
𝑓𝑓5 (7.0,9.0,10.0) (0.0,1.0,3.0) (1.0,3.0,5.0) (3.0,5.0,7.0) (0.0,1.0,3.0) 

 
Linguistic information about the probabilities of economic 

conditions is described as follows:  
𝑃𝑃�𝑙𝑙 = (0.2, 0.3, 0.4) 𝑠𝑠1⁄ + (0.1, 0.2, 0.3) 𝑠𝑠2⁄ + (0.0, 0.1, 0.2) 𝑠𝑠3⁄ +
+ (0.3, 0.3, 0.5) 𝑠𝑠4⁄ + (0.0, 0.1, 0.4) 𝑠𝑠5⁄  

Applying the approach based on the concept of fuzzy optimality, 
the considered problem can be solved as follows. First, 𝑛𝑛𝑛𝑛𝑛𝑛 , 
𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛𝑛𝑛 are calculated: 

𝑛𝑛𝑛𝑛𝑛𝑛 =

⎣
⎢
⎢
⎢
⎡
0        0.28667       0.21               0.55667         0.42667
0.02        0                     0.056667     0.35667        0.28
0.033333        0.14667       0                      0.41333        0.31
0.02        0.086667    0.053333     0                      0.15667
0.046667        0.16667       0.10667       0.31333        0 ⎦

⎥
⎥
⎥
⎤
, 

𝑛𝑛𝑛𝑛𝑛𝑛 =

⎣
⎢
⎢
⎢
⎡
5                  4.6933      4.7567     4.4233      4.5267
4.6933      5                   4.7967     4.5567      4.5533
4.7567      4.7967      5                 4.5333      4.5833
4.4233      4.5567      4.5333      5                 4.53
4.5267      4.5533      4.5833      4.53           5 ⎦

⎥
⎥
⎥
⎤
, 
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𝑛𝑛𝑛𝑛𝑛𝑛 =

⎣
⎢
⎢
⎢
⎡
0                     0.02                 0.033333     0.02               0.046667
0.28667      0                        0.14667      0.086667      0.16667
0.21               0.056667      0                     0.053333      0.10667
0.55667       0.35667        0.41333       0                       0.31333
0.42667       0.28                0.31                0.15667        0 ⎦

⎥
⎥
⎥
⎤
.  

Then we calculate 𝜇𝜇𝐷𝐷 and 𝑑𝑑(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) 

𝜇𝜇𝐷𝐷 =

⎣
⎢
⎢
⎢
⎡
0.5                 0.47333      0.48233      0.44633     0.462
0.52667      0.5                 0.509           0.473          0.48867
0.51767      0.491            0.5                0.464          0.47967
0.55367      0.527           0.536           0.5                0.51567
0.538            0.51133     0.52033      0.48433      0.5 ⎦

⎥
⎥
⎥
⎤
,  

 

𝑑𝑑(𝑓𝑓𝑖𝑖,𝑓𝑓𝑘𝑘) =

⎣
⎢
⎢
⎢
⎡
0      0.93023      0.84127      0.96407      0.89062
0      0                    0                     0.75701      0.40476
0      0.61364     0                     0.87097     0.65591
0      0                    0                     0                    0
0      0                    0                     0.5                0 ⎦

⎥
⎥
⎥
⎤
. 

Finally, we calculate the degree of optimality for each of the 
considered alternatives: 

𝑑𝑑𝑑𝑑 =

⎣
⎢
⎢
⎢
⎡
1
0.069767
0.15873
0.035928
0.10938 ⎦

⎥
⎥
⎥
⎤
. 

Thus, the advantages obtained are 𝑓𝑓1 ≿ 𝑓𝑓3 ≿ 𝑓𝑓5 ≿ 𝑓𝑓2 ≿ 𝑓𝑓4 . The 
degrees of preference are as follows: 
𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓1 ≿𝑙𝑙 𝑓𝑓3) = 0.84, 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓3 ≿𝑙𝑙 𝑓𝑓5) = 0.05,  

𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓5 ≿𝑙𝑙 𝑓𝑓2) = 0.04, 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓2 ≿𝑙𝑙 𝑓𝑓4) = 0.034. 

The advantage obtained by this method is: 𝑓𝑓1 ≿ 𝑓𝑓3 ≿ 𝑓𝑓2 ≿ 𝑓𝑓5 ≿ 𝑓𝑓4. 
It can be seen from here that the order obtained by our proposed 
method is almost the same as the result obtained by the method 
proposed. In addition, the proposed method has several advantages 
compared to the method. First, our proposed method not only 
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determines the order among alternatives, but also determines how 
optimal the considered alternative is. This degree is the overall degree 
to which the alternative under consideration is better than the others. 
Second, by means of the method proposed, it is possible to separate 
the considered alternatives into less and optimal ones by determining 
the corresponding 𝑘𝑘𝐹𝐹 values using our proposed approach. Taking into 
account these two advantages, the method proposed in the dissertation 
has almost the same computational complexity as the method. 

 
6.2. Decision making for a multi-criteria marketing problem. 

Marketing decision making under Z-information.  
In this application we intend a problem of marketing decision 

making in the field of IT. Two new software products were introduced 
to the market by Techware Incorporated; the company has three 
alternatives related to these two products: it introduces product 1 only, 
product 2 only, or introduces both products. The costs for research and 
development for these two products are $180,000 and $150,000, 
respectively.  

The trend of the national economy and the consumers reaction to 
these products will affect the success of these products in the coming 
year. If the company introduces product 1, then it will have revenue of 
$500,000, $260,000 and $120,000 for strong, fair and weak national 
economy respectively. Similarly, when product 2 is introduced, there 
will be a revenue of $420,000, $230,000 and 110,000 for a strong, fair 
and weak national economy, respectively.  

Finally, when introducing both products 1 and 2 the revenues will 
be $820,000, $390,000, $200,000 for strong, fair and weak national 
economy, respectively. The experts of the company are very sure that 
the probabilities of strong and fair economy are about 0.30 and about 
0.50 respectively. The problem is to determine the best decision. 

The analyzed data are obtained from Techware Incorporated in 30. 
Let us proceed to formal description of the considered decision 

problem. The partially reliable linguistic decision-relevant 

 
30 Winston, W. L. and Albright, S.C., Broadie, M. (2002) Practical management science. 
Thomas Learning, 2nd Ed., pp. 496-498. 
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information in the considered problem will be described by Z-
numbers. The set of alternatives: 

𝒜𝒜 = {𝑓𝑓1, 𝑓𝑓2,𝑓𝑓3}, 

where 𝑓𝑓1  denotes introducing product 1, 𝑓𝑓2  denotes introducing 
product 2, 𝑓𝑓3 denotes introducing both products (1 and 2). The set of 
states of nature: 

𝒮𝒮 = {𝑆𝑆1,𝑆𝑆2, 𝑆𝑆3}, 

where 𝑆𝑆1  denotes strong national economy, 𝑆𝑆2  denotes fair national 
economy, 𝑆𝑆3 denotes strong national economy. The probabilities of 
states of nature are  
𝑍𝑍𝑃𝑃(𝑆𝑆1) = (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 0.3, 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), 

𝑍𝑍𝑃𝑃(𝑆𝑆2) = (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 0.5, 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠).  

The set of outcomes: 
𝒳𝒳 = {(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), 

 
The partially reliable linguistic information for the probabilities of 

states of nature and the utilities of each alternative taken at different 
states of nature is shown in Table 2. 

 
Table 2. The values of utilities for different alternatives and 

probabilities of states of nature 
 S1 S2 S3 
 (about 0.3, quite sure) (about 0.5, quite sure) (about 0.2, quite 

sure) 
f1 (high;  likely) (medium;  likely) (low;  likely) 
f2 (below than high;  likely) (medium;  likely) (low;  likely) 
f3 (high;  likely) (more than low;  likely) (low;  likely) 

 
The corresponding decision matrix with Z-number-based 

representation is shown in Table 3. 
 

( , ) (   , ),  
( , )}.
medium likely below than high likely
high likely
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Table 3. Decision matrix with Z-number 
 𝑆𝑆1 

𝑍𝑍41 

𝑆𝑆2 

𝑍𝑍42 

𝑆𝑆3 

𝑍𝑍43 

𝑓𝑓1 𝑍𝑍11 𝑍𝑍12 𝑍𝑍13 

𝑓𝑓2 𝑍𝑍21 𝑍𝑍22 𝑍𝑍23 

𝑓𝑓3 𝑍𝑍31 𝑍𝑍32 𝑍𝑍33 

 
6.3. Optimal Planning of Company Production by Z-linear 

Programming.  
Consider the following Z-LP problem with two decision variables 

31:  
𝑍𝑍𝑐𝑐1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑐𝑐2𝑍𝑍𝑥𝑥2 → max 

subject to 
𝑍𝑍𝑎𝑎11𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎12𝑍𝑍𝑥𝑥2 ≤

𝑍𝑍 𝑍𝑍𝑏𝑏1 ,
𝑍𝑍𝑎𝑎21𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎22𝑍𝑍𝑥𝑥2 ≤

𝑍𝑍 𝑍𝑍𝑏𝑏2 ,
 

𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 ≥
𝑍𝑍 𝑍𝑍0, 

where 𝑍𝑍𝑥𝑥1 = (𝐴𝐴𝑥𝑥1 ,𝐵𝐵𝑥𝑥1) , 𝑍𝑍𝑥𝑥2 = (𝐴𝐴𝑥𝑥2 ,𝐵𝐵𝑥𝑥2)  and 𝑍𝑍𝑐𝑐1 = (𝐴𝐴𝑐𝑐1 ,𝐵𝐵𝑐𝑐1) , 
𝑍𝑍𝑐𝑐2 = (𝐴𝐴𝑐𝑐2 ,𝐵𝐵𝑐𝑐2) , 𝑍𝑍𝑎𝑎11 = (𝐴𝐴𝑎𝑎11 ,𝐵𝐵𝑎𝑎11)  , 𝑍𝑍𝑎𝑎12 = (𝐴𝐴𝑎𝑎12 ,𝐵𝐵𝑎𝑎12) , 𝑍𝑍𝑎𝑎21 =
(𝐴𝐴𝑎𝑎21 ,𝐵𝐵𝑎𝑎21), 𝑍𝑍𝑎𝑎22 = (𝐴𝐴𝑎𝑎22 ,𝐵𝐵𝑎𝑎22), 𝑍𝑍𝑏𝑏1 = (𝐴𝐴𝑏𝑏1 ,𝐵𝐵𝑏𝑏1),𝑍𝑍𝑏𝑏2 = (𝐴𝐴𝑏𝑏2 ,𝐵𝐵𝑏𝑏2). 
The values of these Z-numbers are given below. 

A Z-number𝑍𝑍𝑐𝑐1 = (𝐴𝐴𝑐𝑐1 ,𝐵𝐵𝑐𝑐1): 

𝐴𝐴𝑐𝑐1 = 0.0
0� + 0.0

1� + 0.0003
2� + 0.01

3� + 0.14
4� + 0.61

5� +

+ 1.0
6� + 0.61

7� + 0.14
8� + 0.01

9� + 0.0003
10� ,

 

𝐵𝐵𝑐𝑐1 = 0
0� + 0

0.1� + 0
0.2� + 0.01

0.3� + 0.14
0.4� + 0.60

0.5� +

+ 1
0.6� + 0.61

0.7� + 0.14
0.8� + 0.01

0.9� + 0
1� .

 

A Z-number𝑍𝑍𝑐𝑐2 = (𝐴𝐴𝑐𝑐2 ,𝐵𝐵𝑐𝑐2): 

 
31 Aliev, R. A., Alizadeh, A. V., Huseynov, O. H., Jabbarova, K.I. Z-number based Linear 
Programming. Int. J. Intell. Syst. 
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𝐴𝐴𝑐𝑐2 = 0.0
0� + 0.0

1� + 0.0
2� + 0.0

3� + 0.0003
4� + 0.01

5� + +
0.14

6� + 0.61
7� + 1.0

8� + 0.61
9� + 0.14

10� ,
 

𝐵𝐵𝑐𝑐2 = 0
0� + 0

0.1� + 0.01
0.2� + 0.14

0.3� + 0.61
0.4� +

+ 1
0.5� + 0.61

0.6� + 0.14
0.7� + 0.01

0.8� + 0
0.9� + 0

1� .
 

A Z-number 𝑍𝑍𝑎𝑎11 = (𝐴𝐴𝑎𝑎11 ,𝐵𝐵𝑎𝑎11): 

𝐴𝐴𝑎𝑎11 = 0.01
0� + 0.14

1� + 0.61
2� + 1.0

3� + 0.61
4� + 0.14

5� +

+ 0.01
6� + 0.001

7� + 0
8� + 0

9� + 0
10� ,

 

𝐵𝐵𝑎𝑎11 = 0
0� + 0

0.1� + 0
0.2� + 0

0.3� + 0
0.4� + 0

0.5� +

+ 0.01
0.6� + 0.14

0.7� + 0.61
0.8� + 1

0.9� + 0.61
1� .

 

A Z-number𝑍𝑍𝑎𝑎12 = (𝐴𝐴𝑎𝑎12 ,𝐵𝐵𝑎𝑎12): 

𝐴𝐴𝑎𝑎12 = 0.61
0� + 1

1� + 1.0
2� + 0.61

3� + 0.14
4� + 0.01

5� +

+ 0.001
6� + 0

7� + 0
8� + 0

9� + 0
10� ,

 

𝐵𝐵𝑎𝑎12 = 0
0� + 0

0.1� + 0
0.2� + 0

0.3� + 0
0.4� + 0

0.5� +

+ 0.01
0.6� + 0.14

0.7� + 0.61
0.8� + 1

0.9� + 0.61
1� .

 

For simplicity, 𝑍𝑍𝑎𝑎21 = (𝐴𝐴𝑎𝑎21 ,𝐵𝐵𝑎𝑎21) and 𝑍𝑍𝑎𝑎22 = (𝐴𝐴𝑎𝑎22 ,𝐵𝐵𝑎𝑎22)  are 
chosen as singletons: 
𝐴𝐴𝑎𝑎21 = 1,𝐵𝐵𝑎𝑎21 = 1; 

𝐴𝐴𝑎𝑎22 = 1,𝐵𝐵𝑎𝑎22 = 1. 

A Z-number 𝑍𝑍𝑏𝑏1 = (𝐴𝐴𝑏𝑏1 ,𝐵𝐵𝑏𝑏1): 
𝐴𝐴𝑏𝑏1 = 0.14

0� + 0.61
1� + 1

2� + 0.61
3� + 1.0

4� + 0.61
5� +

+ 0.14
6� + 0.01

7� + 0.001
8� + 0

9� + 0
10� ,

 

𝐵𝐵𝑏𝑏1 = 0
0� + 0

0.1� + 0
0.2� + 0

0.3� + 0
0.4� + 0

0.5� +

+ 0.01
0.6� + 0.14

0.7� + 0.61
0.8� + 1

0.9� + 0.61
1� .

 

A Z-number 𝑍𝑍𝑏𝑏2 = (𝐴𝐴𝑏𝑏2 ,𝐵𝐵𝑏𝑏2): 
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𝐴𝐴𝑏𝑏2 = 0.01
0� + 0.14

1� + 0.61
2� + 1.0

3� + 0.14
4� + 0.01

5� +

+ 0
6� + 0

7� + 0
8� + 0

9� + 0
10� ,

  

𝐵𝐵𝑏𝑏2 = 0
0� + 0

0.1� + 0
0.2� + 0

0.3� + 0
0.4� + 0

0.5� +

+ 0.01
0.6� + 0.14

0.7� + 0.61
0.8� + 1

0.9� + 0.61
1� .

  

By adding Z-valued slack variables, we obtain: 
𝑍𝑍𝑐𝑐1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑐𝑐2𝑍𝑍𝑥𝑥2 → max 

subject to 
𝑍𝑍𝑎𝑎11𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎12𝑍𝑍𝑥𝑥2 + 𝑍𝑍𝑥𝑥3 = 𝑍𝑍𝑏𝑏1 ,
𝑍𝑍𝑎𝑎21𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎22𝑍𝑍𝑥𝑥2 + 𝑍𝑍𝑥𝑥4 = 𝑍𝑍𝑏𝑏2 ,  

𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 ,𝑍𝑍𝑥𝑥3 ,𝑍𝑍𝑥𝑥4 ≥
𝑍𝑍 𝑍𝑍0. 

Then we arrive at the equivalent form: 
−(𝑍𝑍𝑐𝑐1𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑐𝑐2𝑍𝑍𝑥𝑥2) + (𝑍𝑍𝑏𝑏1 − (𝑍𝑍𝑎𝑎11𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎12𝑍𝑍𝑥𝑥2 + 𝑍𝑍𝑥𝑥3 + 𝑍𝑍𝑥𝑥4)) +
+(𝑍𝑍𝑏𝑏2 − (𝑍𝑍𝑎𝑎21𝑍𝑍𝑥𝑥1 + 𝑍𝑍𝑎𝑎22𝑍𝑍𝑥𝑥2 + 𝑍𝑍𝑥𝑥3 + 𝑍𝑍𝑥𝑥4)) → min  

subject to  
𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 ,𝑍𝑍𝑥𝑥3 ,𝑍𝑍𝑥𝑥4 ≥

𝑍𝑍 𝑍𝑍0. 

We applied the suggested DEO algorithm-based method for solving 
this problem 32. The following values of the parameters of the DE 
optimization algorithm were used: mutation rate 𝐹𝐹 = 0.8, crossover 
probability 𝐶𝐶𝐶𝐶 = 0.7 , population size is 𝑃𝑃𝑃𝑃 = 80 . The obtained 
optimal solution and the optimal value of the objective function are 
given below. 

The first decision variable 𝑍𝑍𝑥𝑥1 = (𝐴𝐴𝑥𝑥1 ,𝐵𝐵𝑥𝑥1): 
𝐴𝐴𝑥𝑥1 = 1.0

0� + 0.61
1� + 0.14

2� + 0.01
3� + 0.0

4� + 0.0
5� +

+ 0.0
6� + 0.0

7� + 0.0
8� + 0.0

9� + 0.0
10� ,

 

 
32 Aliev, R. A., Alizadeh, A. V., Huseynov, O. H., Jabbarova, K.I. Z-number based Linear 
Programming. Int. J. Intell. Syst. 
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𝐵𝐵𝑥𝑥1 = 0.14
0� + 0.61

0.1� + 1.0
0.2� + 0.61

0.3� + 0.14
0.4� +

+ 0.01
0.5� + 0.0

0.6� + 0.0
0.7� + 0.0

0.8� + 0.0
0.9� + 0.0

1� .
 

The second decision variable 𝑍𝑍𝑥𝑥2 = (𝐴𝐴𝑥𝑥2 ,𝐵𝐵𝑥𝑥2): 
𝐴𝐴𝑥𝑥2 = 0.01

0� + 0.14
1� + 0.61

2� + 1
3� + 0.61

4� + 0.14
5� +

+ 0.01
6� + 0

7� + 0
8� + 0

9� + 0
10� ,

 

𝐵𝐵𝑥𝑥2 = 0
0� + 0

0.1� + 0
0.2� + 0

0.3� + 0
0.4� + 0.0001

0.5� +

+ 0.001
0.6� + 0.01

0.7� + 0.14
0.8� + 0.61

0.9� + 1
1� .

 

The third (slack) decision variable 𝑍𝑍𝑥𝑥3 = (𝐴𝐴𝑥𝑥3 ,𝐵𝐵𝑥𝑥3): 

𝐴𝐴𝑥𝑥3 = 0
0� + 0.01

1� + 0.14
2� + 0.61

3� + 1
4� + 0.61

5� +

+ 0.14
6� + 0.01

7� + 0
8� + 0

9� + 0
10� ,

 

𝐵𝐵𝑥𝑥3 = 0
0� + 0

0.1� + 0
0.2� + 0.001

0.3� + 0.01
0.4� + 0.14

0.5� +

+ 0.61
0.6� + 1

0.7� + 0.61
0.8� + 0.14

0.9� + 0.01
1� .

  

The fourth (slack) decision variable 𝑍𝑍𝑥𝑥4 = (𝐴𝐴𝑥𝑥4 ,𝐵𝐵𝑥𝑥4): 
𝐴𝐴𝑥𝑥4 = 0

0� + 0.01
1� + 0.14

2� + 0.61
3� + 1

4� + 0.61
5� +

+ 0.14
6� + 0.01

7� + 0
8� + 0

9� + 0
10� ,

 

𝐵𝐵𝑥𝑥4 = 0
0� + 0

0.1� + 0
0.2� + 0.01

0.3� + 0.14
0.4� +

+ 0.61
0.5� + 1

0.6� + 0.61
0.7� + 0.14

0.8� + 0.01
0.9� + 0

1� .
 

The optimal value of the objective function 𝑍𝑍𝑓𝑓(𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2) =
(𝐴𝐴𝑓𝑓 ,𝐵𝐵𝑓𝑓): 

𝐴𝐴𝑓𝑓 = 0
0� + 0.61

14� + 1
24� + 0.61

32� + 0.14
43� +

+ 0.14
66� + 0

86� + 0
120� + 0

160� ,
 

𝐵𝐵𝑓𝑓 = 0
0.09� + 0

0.12� + 0
0.14� + 0

0.143� + 0
0.17� + 0

0.2� +

+ 0.0001
0.22� + 0.01

0.224� + 0.14
0.25� + 0.61

0.28� + 1
0.3� .
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For comparative analysis of results of this Z-LP example, the same 
LP problem from 33 which is stated in terms of GFNs is considered. A 
GFN is a modified trapezoidal fuzzy number(𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑;𝑤𝑤), where 𝑤𝑤 
is a maximal value of the membership function. The results obtained 
in are as follows: 
𝑥𝑥1 = 0, 𝑥𝑥2 = (1,2,4,7; 0.7) and 𝑓𝑓 = (4,12,40,112; 0.5). 

The core of the first component in 𝑍𝑍𝑥𝑥1 = (𝐴𝐴𝑥𝑥1 ,𝐵𝐵𝑥𝑥1) is equal to 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴𝑥𝑥1) = 0  and the center of the interval with the highest 
membership values for the GFN 𝑥𝑥1  is 3. The core of the first 
component in 𝑍𝑍𝑥𝑥2 = (𝐴𝐴𝑥𝑥2 ,𝐵𝐵𝑥𝑥2)  is 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴𝑥𝑥1) = 3  and center of the 
interval with the highest membership values for the GFN 𝑥𝑥2 is 2.45. 
The core of the first component of a Z-number 𝑍𝑍𝑓𝑓(𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2) =
(𝐴𝐴𝑓𝑓 ,𝐵𝐵𝑓𝑓)  describing optimal value of the objective function is 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴𝑓𝑓) = 24 and the rank of center of the interval with the highest 
membership values for the GFN (4,12,40,112; 0.5) is 21. At the same 
time, the difference in the reliability levels of the results obtained by 
the compared approaches is larger. However, one can see that the 
results obtained by both the approaches are close to each other. There 
are two basic differences between the approach suggested in [23] and 
our approach34.  

The first concerns structures of a Z-number and a generalized fuzzy 
number (GFN). A GFN is a modified trapezoidal fuzzy 
number(𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑;𝑤𝑤), where 𝑤𝑤 is a maximal value of the membership 
function. Thus, in this formalization, belief related to an imprecise 
estimation is represented as a maximal value of membership function 
which may be lower than 1. In a Z-number, belief (reliability) to 𝐴𝐴𝑥𝑥 is 
formalized as a value of probability measure of 𝐴𝐴𝑥𝑥 . That is, a Z-
number is a more structured formal construct and has a more 
expressive power. Moreover, in computation with Z-numbers, 

 
33 Kumar, A., Singh P. and Kaur, J. (2010). Generalized Simplex Algorithm to Solve Fuzzy 
Linear Programming Problems with Ranking of Generalized Fuzzy Numbers. TJFS, 1, 
pp:80-103. 
34 Aliev, R. A., Alizadeh, A. V., Huseynov, O. H., Jabbarova, K.I. Z-number based Linear 
Programming. Int. J. Intell. Syst., accepted. 
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propagation of reliability is carried on a more fundamental level, and 
reliability is computed at each step. In contrast, when using GFNs, 
propagation of belief is more sketchy (min operation is used). From 
the other side, in a Z-number belief is described by a fuzzy number, 
whereas in GFN belief is a precise value which is counterintuitive.  

 
6.4. Multi-criteria decision making based on Z-mathematical 

programming.  
Business Decision Making in Mix-product. A manufacturing 

company produces products A, B and C and has six processes for 
production. A decision maker has three objectives: maximizing profit, 
quality and worker satisfaction. Naturally, the parameters of objective 
functions and constraints are assigned by Z-numbers. Z-information 
on manufacturing planning is given in Table 4. Z-information on 
expected profit, index of quality and worker satisfaction index is given 
in Table 5.  

 

Table 4. Z-information on manufacturing planning data 
Resource 

type 
Product A 

(𝑍𝑍𝑥𝑥1) 
Product B 

(𝑍𝑍𝑥𝑥2) 
Product C 

(𝑍𝑍𝑥𝑥3) 
Maximum 
available 

capacity per 
month (hours) 

(𝑍𝑍𝑏𝑏𝑖𝑖) 

1 
𝑍𝑍𝑎𝑎11 = 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  12,
0,9) 

𝑍𝑍𝑎𝑎12 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  17,
0,9) 

𝑍𝑍𝑎𝑎13 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  0,
0, ̃9) 

𝑍𝑍𝑏𝑏1 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1400,0,9) 

2 
𝑍𝑍𝑎𝑎21 = 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  2,
0,9) 

𝑍𝑍𝑎𝑎22 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  9,
0,9) 

𝑍𝑍𝑎𝑎23 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  8,
0,9) 

𝑍𝑍𝑏𝑏2 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1000,
0,9) 

3 
𝑍𝑍𝑎𝑎31 = 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  10,
0,9) 

𝑍𝑍𝑎𝑎32 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  13,
0,9) 

𝑍𝑍𝑎𝑎33 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  15,
0,9) 

𝑍𝑍𝑏𝑏3 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1750,0,9) 

4 
𝑍𝑍11 = 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  6,
0,9) 

𝑍𝑍42 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  0,
0,9) 

𝑍𝑍𝑎𝑎13 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  16,
0,9) 

𝑍𝑍𝑏𝑏4 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1325,
0,9) 

5 𝑍𝑍51 = 𝑍𝑍52 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  12,0,9) 

𝑍𝑍𝑎𝑎53 = 𝑍𝑍𝑏𝑏5 = 
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(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  0,
0,9) 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  7,
0,9) 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  900,
0,9) 

6 
𝑍𝑍61 = 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  9,5,
0,9) 

𝑍𝑍62 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  9,5,
0,9) 

𝑍𝑍𝑎𝑎63 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  4,
0,9) 

𝑍𝑍𝑏𝑏6 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1075,
0,9) 

 
Table 5. Z-information on profits, quality, and worker satisfaction 

Type of  
objectives 

Product A Product B Product C 

Profit  𝑍𝑍𝐶𝐶11 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  0,
0,8) 

𝑍𝑍𝐶𝐶12 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  100,
0,8) 

𝑍𝑍𝐶𝐶13 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  17,5,
0,8) 

Quality  𝑍𝑍𝐶𝐶21 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  92,
0,8) 

𝑍𝑍𝐶𝐶22 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  75,
0,8) 

𝑍𝑍𝐶𝐶11 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  50,
0,8) 

Worker 
satisfaction 

𝑍𝑍𝐶𝐶31 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  25,
0,8) 

𝑍𝑍𝐶𝐶32 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  100,
0,8) 

𝑍𝑍𝐶𝐶33 = 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  75,
0,8) 

 
Taking into account Z-information given in Tables 4, 5, multi-

criteria Z-LP model for multi-criteria planning decision may be 
formulated as follows. 

 
𝑍𝑍𝑓𝑓1(𝑍𝑍𝑥𝑥) = �(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  50, 0,8 ⋅ 𝑍𝑍𝑥𝑥1 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  100, 0,8 ⋅ 𝑍𝑍𝑥𝑥2 +
+(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  17,5, 0,8 ⋅ 𝑍𝑍𝑥𝑥3) → max  

 

𝑍𝑍𝑓𝑓2(𝑍𝑍𝑥𝑥) = �(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  92, 0,8 ⋅ 𝑍𝑍𝑥𝑥1 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  75, 0,8 ⋅ 𝑍𝑍𝑥𝑥2 +
+𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  50, 0,8 ⋅ 𝑍𝑍𝑥𝑥3) → max  

 

𝑍𝑍𝑓𝑓3(𝑍𝑍𝑥𝑥) = �(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  25, 0,8 ⋅ 𝑍𝑍𝑥𝑥1 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  100, 0,8 ⋅ 𝑍𝑍𝑥𝑥2 +
+(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  75, 0,8 ⋅ 𝑍𝑍𝑥𝑥3) → max
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(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  12, 0.9) ⋅ 𝑍𝑍𝑥𝑥1 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  17, 0.9) ⋅ 𝑍𝑍𝑥𝑥2 ≤ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1400,

0.9)
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  2, 0.9) ⋅ 𝑍𝑍𝑥𝑥1 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  9, 0.9) ⋅ 𝑍𝑍𝑥𝑥2 +
+(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  8,0.9) ⋅ 𝑍𝑍𝑥𝑥3 ≤ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1000, 0.9)  

 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  10, 0.9) ⋅ 𝑍𝑍𝑥𝑥1 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  13, 0.9) ⋅ 𝑍𝑍𝑥𝑥2 +
+(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  15, 0.9) ⋅ 𝑍𝑍𝑥𝑥3 ≤ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1750, 0.9)  

 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  6, 0.9) ⋅ 𝑍𝑍𝑥𝑥1 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  16, 0.9) ⋅ 𝑍𝑍𝑥𝑥3 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1325,

0.9) 

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  12, 0.9) ⋅ 𝑍𝑍𝑥𝑥2 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  7, 0.9) ⋅ 𝑍𝑍𝑥𝑥3 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  900,

0.9) 

 
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  9.5, 0.9) ⋅ 𝑍𝑍𝑥𝑥1 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  9.5, 0.9) ⋅ 𝑍𝑍𝑥𝑥2 +
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  4, 0.9) ⋅ 𝑍𝑍𝑥𝑥3 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1075, 0.9)  

 
𝑍𝑍𝑥𝑥1 ,𝑍𝑍𝑥𝑥2 ,𝑍𝑍𝑥𝑥3 ≥ 0. 

 
6.5. Modeling of cerebrospinal fluid (CSF) flow based on Z-

Differential equations.  
In 35 , they consider the application of Z-valued differential 

equations to the modeling of cerebrospinal fluid (CSF) flow. However, 
𝑍𝑍+-numbers are used instead of Z-numbers. We give the solution of 
differential equations described entirely by Z-numbers. CSF surrounds 
the brain and spinal cord. The CSF flow acts as a cushion to protect 
the brain, as well as being crucial for the removal of waste products 
from the brain. Hydrocephalus is a brain disease in which 
abnormalities in CSF flow result in ventricular dilatation and brain 

 
35 M. Mazandarani and Y. Zhao, "Z-Differential Equations," in IEEE Transactions 
on Fuzzy Systems. doi: 10.1109/TFUZZ.2019.2908131 
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compression 36, 37. In other words, excessive accumulation of CSF 
causes the ventricles to dilate abnormally, creating potentially 
damaging pressure on brain tissue. The mathematical model of such a 
disorder is as follows: 

𝑧𝑧′(𝑡𝑡) = (−𝑘𝑘
𝑟𝑟
) ⋅ (𝑧𝑧(𝑡𝑡))2 + (𝑘𝑘 ⋅ 𝐼𝐼𝑓𝑓(𝑡𝑡)) ⋅ 𝑧𝑧(𝑡𝑡) + 𝑘𝑘⋅𝑝𝑝𝑑𝑑

𝑟𝑟
⋅ 𝑧𝑧(𝑡𝑡), 

𝑧𝑧(𝑡𝑡0) = 𝑧𝑧0,    (32) 

where 𝑧𝑧(𝑡𝑡)  is the CSF pressure in mmH2O, 𝑘𝑘 > 0  is the cerebral 
elasticity, 𝑟𝑟 > 0 is the resistance of CSF to absorption, 𝐼𝐼𝑓𝑓 is the rate of 
CSF formation and 𝑝𝑝𝑑𝑑 is the pressure of the venous system which is 
usually equal to 𝑧𝑧(𝑡𝑡0). 

Assume that  

𝑧𝑧(𝑡𝑡0) = (𝑧𝑧𝐴𝐴, 𝑧𝑧𝐵𝐵) = ((110,115,120), (0.5,0.65,1)).  

Without loss of generality, we consider exact values for 𝑘𝑘, 𝑟𝑟and 

𝐼𝐼𝑓𝑓(𝑡𝑡) as 𝑘𝑘 = 1
0.6

, 𝑟𝑟 = 700, and 𝐼𝐼𝑓𝑓(𝑡𝑡) = 0.1.  

Solution of (32) is shown in Figs. 4 - 9. For comparison, we 
consider two cases (Figs. 6 - 9): case 1 - when similarity and 
dependency is not taken into account, case 2 - when similarity and 
dependency are taken into account 38. 

 

 
36 Kauffman Justin, Drapaca Corina S. A fractional pressurevolume model of 
cerebrospinal uid dynamics in hydrocephalus. Mech Biol Syst Mater, vol. 4, 179-
84, 2014. 
37 Marmarou A, Shulman K, Rosende RM, A nonlinear analysis of the 
cerebrospinal uid system and intracranial pressure dynamics. J Neurosurg, vol. 48, 
332-344, 1978. 
38 Rafik A. Aliev Z-Differential Equations, Advances in Intelligent Systems and Computing 
Springer, Cham. https://doi.org/10.1007/978-3-030-35249-3_8, 2019, 69-77, 
https://link.springer.com/chapter/10.1007%2F978-3-030-35249-3_8#citeas 

https://doi.org/10.1007/978-3-030-35249-3_8
https://link.springer.com/chapter/10.1007%2F978-3-030-35249-3_8#citeas
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Fig. 4. 𝑍𝑍𝐴𝐴(𝑡𝑡) component of the solution of equation (32). 

 
Fig. 5.  𝑍𝑍𝐵𝐵(𝑡𝑡) component of the solution of equation (32).  
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Fig. 6. 𝑍𝑍𝐴𝐴(𝑡𝑡) component of the solution of equation (32), case 1.  

 
Fig. 7. 𝑍𝑍𝐵𝐵(𝑡𝑡) component of the solution of equation (32), case 1. 
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Fig. 8. 𝑍𝑍𝐴𝐴(𝑡𝑡) component of the solution of equation (32), case 2. 
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Fig. 9. 𝑍𝑍𝐵𝐵(𝑡𝑡) component of the solution of equation (32), case 2. 
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As can be seen, in case 2 𝑍𝑍𝐵𝐵(𝑡𝑡) is better preserved during the fuzzy 
reliability process (it remains above 0.4, Figure 9), in case 1 it is below 
0.1, and vice versa (figure 7). If we use the threshold value of (𝜇𝜇, 𝜈𝜈)-
cuts, we can get a better result. Thus, the proposed approach is an 
initial step for modeling dependent differential equations with Z-
valued variables with improved handling of the combination of two 
types of uncertainty.  

We use the horizontal membership functions (HMF)-based 
approach to calculations on Z-numbers as a basis for formulating and 
solving the initial condition problem expressed in Z-numbers. For the 
first time, Z-variable DTs are solved without introducing fuzzy and 
Z+-based analogs. At the same time, we propose an algorithm for 
computation with Z-numbers describing data about dependent random 
variables. This allows more adequate modeling of real dynamic 
processes, because the future states of the process naturally depend on 
the previous state. A new and efficient approach similar to Euler's 
method is proposed for calculating the Z-valued initial condition 
problem and numerical solution.  

To show the advantage of this approach, an example of the solution 
of the DT described by Z-valued variables describing the dynamic 
process in the medical field is shown. The obtained results show that 
the proposed approach allows better processing of fuzzy reliability of 
information as one of the main indicators of bimodal data. 

 
 
 

MAIN SCIENTIFIC RESULTS  
The main scientific results obtained in the dissertation work are as 

follows:  
1.  In order to take into account, the reliability of information in 

decision-making, the problems of developing arithmetic and 
algebraic operations on Z-numbers were considered;  

2.  Operations on continuous Z-numbers;  
3.  Operations on discrete Z-numbers;  
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4.  The solution of the Z-linear programming problem was proposed 
for the first time;  

5.  A method of decision-making in the Z-information environment, 
which is free of shortcomings of the utility function, is given;   

6.  A method based on the Pareto optimality principle was proposed 
for ranking alternatives in the Z-information environment;  

7.  The theoretical propositions proposed in the dissertation have 
been widely applied in the Zlab software package, created 
according to the Matlab software package, including operations 
on Z-numbers, Z-linear programming, Pareto optimality, etc. It is 
included in the Zlab package and is widely used in different 
countries of the world.  

8.  The proposed scientific basics were applied to solving the 
problems of decision-making: multi-criteria decision-making in 
marketing problem, optimal planning of the company's production 
based on Z-line programming, and the obtained results confirmed 
their effectiveness. 
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